Stormwater Management Narrative

JACOBIE'S PARKSIDE FARM

Moreau Rec Road Town of Moreau Saratoga County, New York

Applicant: Cerrone Builders 1589 US Route 9 Fort Edward, NY 12828

March, 2025

Prepared By: The Environmental Design Partnership, LLP 900 Route 146 Clifton Park, NY 12065

TABLE OF CONTENTS

Contents

1.0	Introduction	3
2.0	Existing Conditions	
2.1	Soil and Groundwater Conditions	3
3.0	Predevelopment Stormwater Analysis	1
4.0	Stormwater Management Planning and Practice Selection	5
5.0	Post-Development Stormwater Analysis	5
	tormwater Management Area #1	
	tormwater Management Area #2	
5.3 St	tormwater Management Area #3	7
5.3	NYS Unified Stormwater Sizing Criteria	3
5.3	8.1 Water Quality (WQ _v)	3
5.3	8.2 Runoff Reduction Volume (RRv))
5.3		
5.3		
5.3	8.5 Extreme Storm (Q _f)	2
6.0 Pipe	e Sizing	1
7.0 Sum	ımary15	5

Figures

Figure 1 – Site Location Map
Figure 2 – Site Soils Data
Figure 3 – Pre-development Drainage Map
Figure 4 – Post-development Drainage Map

Attachments

Appendix A – WQv Calculations

- RRv Calculations
- Infiltration Basin Calculations

Appendix B – Stormwater Modeling Calculations

1.0 Introduction

Cerrone Builders, is proposing a residential development on an existing parcel of land totaling approximately 27.19 acres located to the north and south of Lenox Boulevard (Moreau Rec Road) within the Town of Moreau, Saratoga County, New York. The proposed project includes the construction of 181 units split between apartments, duplexes and single-family dwellings, along with necessary roadways and travel surfaces. The total area of proposed disturbance is approximately 28.0 acres and approximately 13.6 acres of impervious area will be added to the site.

A stormwater management system has been designed to provide pollutant removal, reduce channel erosion, prevent overbank flooding, and safely control extreme flood events in accordance with the NYS Stormwater Management Design Manual (Design Manual). The proposed stormwater management system for the project will include three (3) grassed depressions and three (3) infiltration basins, which will provide a total storage volume of approximately 3.7 acre-feet.

This narrative presents a review of the design concepts and parameters of the stormwater management system for the proposed development. The purpose of the stormwater management narrative is to assure that changes in the surface runoff characteristics, as a result of the proposed construction, will not adversely impact adjacent or downstream properties. On-site stormwater management will be implemented in accordance with the NYS Stormwater Management Design Manual to accommodate both additional stormwater runoff and to provide water quality treatment according to the green infrastructure standards.

2.0 Existing Conditions

The existing project site (Figure 2) consists predominantly of cultivated fields and farmland. The topography of the site varies with slopes ranging from less than 1% to 5%; with localized areas over 15%.

Elevations on site range from 325 to 355 feet above sea level.

The site is bounded by Lenox Avenue to the south, Harry J. Betar Jr. Recreational Park to the east, and by private property to the north and west.

According to the Federal Emergency Management Area (FEMA), the project falls within an area of minimal flood hazards.

2.1 Soil and Groundwater Conditions

The USDA Natural Resources Conservation Service Soil Survey (NRCSS) identifies the primary soil groups within the area of proposed development as Windsor Loamy sand (WnA, WnB) with slopes ranging from 0 to 8%. The NRCSS identifies the Windsor series as excessively drained soils with a low runoff class and classifies them as Hydrologic Soil Group (HSG) "A".

Soil test pits were observed by the Environmental Design Partnership at the site in December 2020. The typical soil profile consists of approximately eight inches of topsoil, underlain by 16 inches of fine brown sand, followed by 72 inches of brown coarse sand. Seasonal high groundwater was noted in one test pit, in the lowest area of the site, approximately five feet below the ground surface.

Infiltration testing was also performed by the Environmental Design Partnership at the site in December 2020. The stabilized infiltration rate was on average greater than 100 inches per hour. To be conservative, an infiltration rate of 8.27 inches per hour was used during the design process which matches the hydrologic soil properties found while observing the test pits, per Table 6.9 of the Design Manual.

The results from the soil testing are consistent with NRCSS soil survey records. The results of the soils tests are included on Figure 2.

3.0 Predevelopment Stormwater Analysis

The existing hydrologic conditions, in the area to be disturbed due to the proposed construction, were analyzed using Applied Microcomputer Systems' "HydroCAD" computer modeling program. The HydroCAD stormwater modeling program employs the United States Department of Agriculture's Soil Conservation Service (SCS) Technical Release 20 (TR-20) method for stormwater analysis. Using this modeling technique, the site is divided into "subcatchments" that represent specific areas contributing stormwater runoff to an existing, or proposed drainage feature. The subcatchments typically flow through "reaches" (i.e., swales, channels, or pipes) that convey the stormwater to storm basins or discharge areas.

A hydrologic model of the existing site was prepared using the Hydrocad program. Four (4) subcatchments were used to represent the existing drainage condition, see Figure 3. The total predevelopment stormwater discharge was modeled for several design storms. Stormwater model results are included in Appendix B.

The existing parameters of topography, vegetation, slope, and soil type are all incorporated into the predevelopment model.

Table 1 presents a summary of the pre-development stormwater peak discharge for the 1-year, 10-year and 100-year design storm events at the respective Design Points. As will be discussed in subsequent sections, the post development stormwater discharge rate has been limited to the predevelopment discharge rate for the 1-year, 10-year, and 100-year storm events.

Storm Event	Design Point Peak Discharge (cfs)		Total Peak Discharge offsite (cfs)
	DP1	DP2	
1-Year (2.22")	0.00	0.00	0.00
10-Year (3.70")	0.09	0.00	0.09
100-Year (6.20")	4.92	0.00	4.92

Table 1: Pre-Development Runoff Rates

The predevelopment stormwater discharge was evaluated for several design storms at the Design Points (DP1 and DP2). Design Point DP1 consists of drainage to a low point off site in the wooded area near the southeastern portion of the site. Design Point DP2 consists of drainage offsite near the southwestern portion of the site.

The pre-development Curve Number (CN) for the existing impervious, wooded and pasture/ grassland was established as 98, 30 and 39, respectively. The weighted predevelopment curve number is 41. The HydroCAD model results for the pre-development conditions are included within Attachment B.

4.0 Stormwater Management Planning and Practice Selection

The site layout and stormwater design for this project was completed while taking into consideration the potential impacts on the existing site and downstream hydrology. The existing site predominately infiltrates stormwater runoff; therefore, the proposed system in this portion will rely on infiltration practices. Various measures were taken to help ensure that the post-development hydrology of the site will closely resemble the pre-development hydrology.

Soil restoration has been called for throughout the site in accordance with Chapter 5 of the NYSDEC Stormwater Management Design Manual. The soils on the site are classified as HSG A and need aeration and topsoil in areas of cut or fill. In high traffic areas that are to remain pervious, the soils shall be fully restored by tilling compost into the sub-soils prior to applying topsoil and vegetating. By applying these methods to the soils on the site, the original properties and porosity of the soils will be recovered, which will allow for an improvement in the soil infiltration as well as lawn and landscaping sustainability.

Stormwater management on the site is designed to incorporate infiltration practices through the use of infiltration basins and small portions of disconnection of rooftop runoff. Rooftop Disconnect is considered a RRv technique, and Infiltration practices are considered a standard SMP with RRv Capacity by the NYSDEC Stormwater Management Design Manual. By using

infiltration practices that are located relatively close to the source of runoff, the postdevelopment hydrology will more closely match the pre-development hydrology.

5.0 Post-Development Stormwater Analysis

The post-development conditions, in the area to be disturbed as a result of the proposed construction, were analyzed using Applied Microcomputer Systems' "HydroCAD" computer modeling program.

A hydrologic model of the area to be disturbed as a result of the proposed development, was analyzed using the HydroCAD program. Forty one (41) subcatchments were used to represent the post development drainage conditions of the site. Site improvements to the property will consist of 181 units split between apartments, duplexes and single-family dwellings, along with necessary roadways and travel surfaces. Also included, as permanent elements of the development, are connections to municipal water and sewer. Stormwater management practices have been designed to provide storage, infiltration, and attenuation of stormwater runoff from the proposed impervious surfaces on the site.

Stormwater runoff from the site will be managed with three (3) grassed depressions three (3) infiltration basins. The contributing area to the infiltration basins will include the closed drainage system for the stormwater management areas described below including the impervious roadway area, the impervious driveway areas, the roof and yard areas, and green areas of the surround terrain that will sheet flow toward the proposed roadway. The contributing area to the grassed depressions will include green areas to the rear of the proposed residential buildings as well as the rear rooftop areas of those buildings that will travel via overland flow.

A post-development Curve Number (CN) of 98 was assigned to all impervious surface within the proposed site. A post-development CN of 39 was assigned to all new grassed areas directly contributing to the proposed stormwater devices. The weighted CN for the post-development conditions for the site is 63. The HydroCAD model results for the post-development conditions are included within Attachment B.

5.1 Stormwater Management Area #1

Stormwater Management Area #1 is designed as an infiltration basin in order to attenuate and infiltrate the runoff from the western portions of Road A as well as the associated houses and driveways on this roadway. Stormwater will be collected within the closed drainage system and discharge into SMA #1. The runoff will then travel into forebay SF1 and ultimately to the infiltration basin once the overflow spillway elevation is reached in the forebay. The total area

contributing to the infiltration basin SMA #1 is on the order of 3.7 acres with approximately 0.78 acres of impervious area.

Per Section 6.4.3.2 of the Design Manual, all infiltration practices shall be designed to exfiltrate the entire WQv through the bottom surface area of the practice, and to fully drain within 48 hours of the maximum storm event (100-year storm). SMA #1 has a bottom surface area larger than the minimum required, and an approximate draindown time of 18.3 hours, see Appendix A for detailed calculations.

5.2 Stormwater Management Area #2

Stormwater Management Area #2 is designed as an infiltration basin in order to attenuate and infiltrate the runoff from the central portions of the project site, including the western areas from Road A, Road B, Road C, as well as the associated houses and driveways on these roadways. Stormwater will be collected within the closed drainage system and discharge into SMA #2. The runoff will then travel into forebay SF2 and ultimately to the infiltration basin once the overflow spillway elevation is reached in the forebay. The total area contributing to the infiltration basin SMA #2 is on the order of 11.4 acres with approximately 5.25 acres of impervious area.

Per Section 6.4.3.2 of the Design Manual, all infiltration practices shall be designed to exfiltrate the entire WQv through the bottom surface area of the practice, and to fully drain within 48 hours of the maximum storm event (100-year storm). SMA #2 has a bottom surface area larger than the minimum required, and an approximate draindown time of 19.6 hours, see Appendix A for detailed calculations.

5.3 Stormwater Management Area #3

Stormwater Management Area #3 is designed as an infiltration basin in order to attenuate and infiltrate the runoff from the eastern portions of the project site, including the eastern areas from Road A, Road B, Road C, Road D, as well as the associated houses and driveways on these roadways. Stormwater will be collected within the closed drainage system and discharge into SMA #3. The runoff will then travel into forebay SF3 and ultimately to the infiltration basin once the overflow spillway elevation is reached in the forebay. The total area contributing to the infiltration basin SMA #3 is on the order of 12.8 acres with approximately 7.58 acres of impervious area.

Per Section 6.4.3.2 of the Design Manual, all infiltration practices shall be designed to exfiltrate the entire WQv through the bottom surface area of the practice, and to fully drain within 48 hours of the maximum storm event (100-year storm). SMA #3 has a bottom surface area larger than the minimum required, and an approximate draindown time of 16.3 hours, see Appendix A for detailed calculations.

5.3 NYS Unified Stormwater Sizing Criteria

The proposed post-development site conditions were analyzed using Applied Microcomputer Systems' "HydroCAD" computer modeling program, the results have been included with this report. A technical description of the HydroCAD stormwater modeling program was provided in a previous section.

The area to be disturbed as a result of the proposed development was modeled under the postdevelopment conditions using fourty (40) subcatchment areas (Figure 4) routed into the stormwater management areas. The contributing area of each stormwater management area is identified on Figure 4. The post-development stormwater management system has been designed based on the Unified Stormwater Sizing Criteria as described in the following sections.

5.3.1 Water Quality (WQ_v)

In general, small storm events and the initial runoff from larger storm events are an environmental concern as this stormwater runoff typically contains roadway pollutants and thermal energy stored by the asphalt. In accordance with the NYS Stormwater Management Design Manual, this initial runoff is designated as the Water Quality Volume (WQ_v) and special attention is given to this volume of runoff to meet water quality objectives.

The NYS Stormwater Management Design Manual identifies several standard practices, such as the proposed infiltration basins, rooftop disconnect, and shallow grassy depressions which are acceptable for water quality treatment. These acceptable Stormwater Management Practices (SMPs) can capture and treat the full water quality volume (WQ_v), are capable of 80% TSS removal and 40% TP removal, have acceptable longevity in the field, and have pretreatment mechanism.

The water quality storage volume, WQ_v, is calculated as follows:

$$WQ_{\nu} = \frac{P \cdot R_{\nu} \cdot A}{12}$$

Where: WQ_v = water quality volume (acre-feet)

P = 90% rainfall event number

 $R_v = 0.05+0.009(I)$, where I is percent impervious cover

A = site area (acres), impervious area used with I = 100%

SMA #	Р	R _v	A (ac)	Required $WQ_v(cf)$	Provided WQv (cf)
1	1.1	0.24	3.7	3,554	11,524
2	1.1	0.46	11.4	21,133	71,588
3	1.1	0.58	12.8	29,784	80,982
TOTAL			54,471	164,094	

Table 2: Required Water Quality Volume

5.3.1.1 Pretreatment Practices

In accordance with the Design Manual, the required pre-treatment for infiltration practices is equivalent to 25% of the contributing WQv, when the infiltration rate is less than 10 inches per hour. The proposed pre-treatment practices include storage in the sediment forebays.

The following tables summarizes the treatment of the WQv in the stormwater management areas.

SMA ID	Р	R _v	A (ac)	Required WQ _v (cf)	Provided WQv (cf)
FB#1	1.1	0.24	3.7	889	893
FB#2	1.1	0.46	11.4	5,284	5,454
FB#3	1.1	0.58	12.8	7,446	8,078

Table 3: Pretreatment Water Quality Volume: Infiltration Basin

5.3.2 Runoff Reduction Volume (RRv)

The Design Manual specifies that runoff shall be reduced by 100% of the site WQv using standard SMPs with RRv capacity and green infrastructure techniques. The watershed area is approximately 28.45± acres, with a total post-development impervious area (including existing impervious area) on the order of 13.6± acres. The resulting WQv for these site coverages is computed as 54,471 CF. Runoff reduction will be provided by a combination of standard SMP's with RRv capacity and green infrastructure.

5.3.2.1 Stormwater Management Practices

The NYSDEC stormwater management design manual recognizes the use of infiltration practices and disconnection of rooftop runoff as acceptable for runoff reduction. The proposed infiltration basins will collect the stormwater runoff from the proposed impervious areas and infiltrate 100% of the contributing WQv. Portions of the rear rooftops from the residential buildings will convey stormwater via overland flow towards grassed depressions on site. The total runoff reduction from the infiltration practices and rooftop runoff will be on the order of 56,884 cf.

Runoff Reduction Technique	RRv (cf)
SMA#1 (Infiltration Basin)	3,554
SMA#2 (Infiltration Basin)	21,133
SMA#3 (Infiltration Basin)	29,784
Rooftop Disconnect	2,413
Total Runoff Reduction	56,884
Required Runoff Reduction	29,708

Table 4: Runoff Reduction Volume Summary

Many of the green infrastructure practices recommended in the NYS Stormwater Management Design Manual were not applied to the stormwater management design on this site due to either site restrictions or the use of more feasible green infrastructure of standard SMP techniques in place of more restrictive and/or maintenance intensive practices. The following table discusses why the unused green infrastructure practices were not feasible.

Table 5: Non-Feasible Green Infrastructure Practices
--

Green Infrastructure Practice	Reason use is not feasible	
Conservation of Natural Areas	Existing natural areas on site will be conserved to the greatest extend possible, however the contribution to the RRV reduction is minimal.	
Porous Pavement	Proposed practices require less maintenance and are more economically feasible when compared to porous pavement. Most drainage areas suitable for porous pavement on the project site are already conveyed to infiltration devices.	

900 Route 146, Clifton Park, New York 12065 phone (518) 371-7621 e-mail: info@edpllp.com

Vegetated Swale	Vegetated swales are proposed on the project site, however contribution to the overall runoff reduction is minimal.
Sheet flow to Riparian Buffers or Filter Strips	No Riparian areas exist on the site or in the site perimeter.
Tree Planting/Tree Pit	Trees will be saved on the site as possible to conserve the natural areas. Trees will also be planted to maintain a buffer from the roadway to the proposed site, and surrounding properties though the resulting runoff reduction value for adding additional trees is minimal.
Stream Daylighting	No culverted/piped streams exist on the site or in the site perimeter.
Rain Gardens	Rain gardens are not recommended for commercial applications.
Green Roofs	Proposed practices require less maintenance and are more economically feasible when compared to green roofs.
Stormwater Planters	Proposed practices were deemed more economically feasible and effective as opposed to stormwater planters. Additionally, they require less maintenance.
Rain Barrels/Cisterns	Rain Barrels/Cisterns would require the ability to use the water between storm events which is not feasible for this project type.

5.3.3 Channel Protection (Cp_v)

In accordance with the NYS Stormwater Management Design Manual, stream channel protection, designed to protect stream channels from erosion, is accomplished by providing 24-hour extended detention of the one-year, 24-hour storm event. The Cp_v requirement is typically satisfied by providing additional storage above the water quality (WQ_v) volume.

The one-year storm event was analyzed using the HydroCAD stormwater modeling program (TR-20) under the post development drainage conditions shown on Figure 3. Using a one-year, 24-hour design storm of 2.22 inches the required Cp_v was calculated as presented in Table 6.

	1-Year Design Storm (in)	Cp _v (ft ³)	Cp _v (provided) (ft ³)
SMA#1	2.22	305	11,524
SMA#2	2.22	8,059	71,588
SMA#3	2.22	21,213	80,982
	Total	29,577	164,094

Table 6: Channel Protection Volume Summa	ary
--	-----

5.3.4 Overbank Flood (Q_p)

Overbank Flood Control Criteria has been established to limit the frequency and magnitude of out-of-bank flooding generated through changes in runoff characteristics as a result of increased impervious surface area. In accordance with the NYS Stormwater Management Design Manual, providing sufficient storage volume to attenuate the post development 10-year, 24-hour peak discharge rate to the equivalent pre-development discharge rate controls overbank flooding.

The 10-year design storm event was analyzed using the HydroCAD stormwater modeling program (TR-20) under the post-development drainage conditions shown on Figure 3. Using a 10-year, 24-hour design storm of 3.70 inches, the stormwater management areas were designed with sufficient storage volume to limit the post-development 10-year, 24-hour peak discharge rate to the pre-development discharge rate. The following table presents the pre-and post-development discharge rates for the offsite discharge. As indicated, the post-development discharge rate is equal to the pre-development rate as required.

Design Point	10-year (3.70") runoff rate (cfs)		
	Predevelopment	Post-Development	
DP1	0.00	0.00	
DP2	0.00	0.00	
TOTAL	0.00	0.00	

Table 7: Overbank Flow Runoff Summary

5.3.5 Extreme Storm (Q_f)

In accordance with the NYS Stormwater Management Design Manual, the stormwater management system must attenuate the post development 100-year, 24-hour peak discharge rate to the predevelopment rate while providing safe passage of this storm event.

The 100-year storm event was analyzed using the HydroCAD stormwater modeling program (TR-20) under the post-development drainage conditions shown in Figure 3. Using a 100-year, 24-hour design storm of 6.20 inches, the stormwater management areas were designed with sufficient storage volume to limit the post-development 100-year, 24-hour peak discharge rate to the predevelopment discharge rate. The following table presents the pre and post-

development discharge rates for the offsite discharge. As indicated, the post-development discharge rate is less than the predevelopment rate as required.

Design Point	100-year (6.20") runoff rate (cfs)		
	Predevelopment	Post-Development	
DP1	4.92	0.00	
DP2	0.00	0.00	
TOTAL	4.92	0.00	

Table 8: Extreme Storm Runoff Summary

6.0 Pipe Sizing

The proposed storm sewer collection system was analyzed using HydroCAD. The pipes were sized using Manning's equation to fully handle the 10-year storm event without any surcharging. The following table summarizes the pipe sizing for the project.

Catch Basin I.D.	Pipe Size (in.)	Pipe Slope	10 Year Capacity (cfs)	10 Year Flow (cfs)	Discharge Location
CB5	12	0.47%	2.65	1.22	CN 4 4 114
CB6	15	0.74%	6.04	2.33	SMA #1
CB14	15	0.48%	4.86	2.84	
CB15	15	0.55%	5.20	4.84	
CB16	18	0.55%	8.46	5.51	
CB75	12	0.81%	3.48	1.19	
CB28	15	0.48%	4.86	3.34	
CB29	15	0.59%	5.39	4.01	
CB18	24	0.90%	23.31	10.5	SMA #2
CB32	15	0.49%	4.91	3.09	
CB33	15	0.51%	5.01	4.11	
CB34	18	0.43%	7.48	5.30	
CB20	24	0.55%	18.22	17.43	
CB66	24	0.92%	23.57	18.73	
CB67	24	0.67%	20.11	19.66	
CB83	12	0.49%	2.71	1.14	
CB82	15	0.50%	4.96	2.74	
CB87	15	0.52%	5.06	4.37	
CB88	18	0.52%	8.23	7.08	
CB49	12	0.91%	3.69	3.27	
CB38	12	1.11%	4.08	1.23	
CB39	18	0.42%	7.39	7.26	
CB90	24	0.68%	20.26	15.19	
CB56	12	1.21%	4.26	0.69	
CB57	12	1.02%	3.91	2.58	SMA #3
CB58	18	0.70%	9.55	5.24	
CB98	24	0.76%	21.42	21.24	
CB45	12	0.64%	3.10	3.08	
CB76	12	1.17%	4.19	1.11	
CB77	15	0.42%	4.55	2.9	
CB79	15	0.42%	4.55	4.3	
CB95	15	0.67%	5.74	5.73	
CB94	30	0.57%	33.64	32.57	

Table 9: Storm Sewer Pipe Sizing

900 Route 146, Clifton Park, New York 12065 phone (518) 371-7621 e-mail: info@edpllp.com

7.0 Summary

Development of the proposed property will change the stormwater drainage characteristics of the site; impervious area will be added and the site will be re-graded to support the proposed improvements. Changes to the stormwater drainage characteristics of the site have been evaluated in accordance with the NYS Stormwater Management Design Manual. The proposed stormwater management system has been designed to comply with the recommendations in the Design Manual related to water quality, runoff reduction, channel protection, overbank flood control and extreme flood control for new development projects.

The proposed stormwater management system has been designed to attenuate and treat the stormwater runoff generated from the contributing areas for storm events up to and including the 100-year design storm event. The proposed stormwater management design includes the use of infiltration basins and grassed depressions. Extended detention storage will be provided above the required water quality volume to meet detention (Q_{p}) requirements. Stormwater modeling results, based on the proposed site layout, indicate the ability to reduce the overall post-development discharge rate from the site as summarized in Table 10.

Peak Discharge Rates in cfs	1-Year	10-Year	100-Year
Peak Discharge Rates III cis	Storm	Storm	Storm
Pre-Development	0.00	0.00	4.92
Post-Development	0.00	0.00	0.00
Overall Reduction (cfs)	0.00	0.00	4.92

Table 10: Post Development Stormwater Peak Discharge Rates

Through the implementation of acceptable stormwater management practices, recommended by the NYS Stormwater Management Design Manual, the proposed project will not adversely affect adjacent or downstream properties.

Prepared by:

The Environmental Design Partnership, LLP

Jakob Cruikshank, P.E.

REFERENCES

HydroCAD version 8.50, Applied Microcomputer Systems, Chocura, New Hampshire.

NYSDEC, 1990. "Technical and Operational Guidance Series (5.1.8) Stormwater Management Guidelines for New Development", New York State Department of Environmental Conservation, Division of Water.

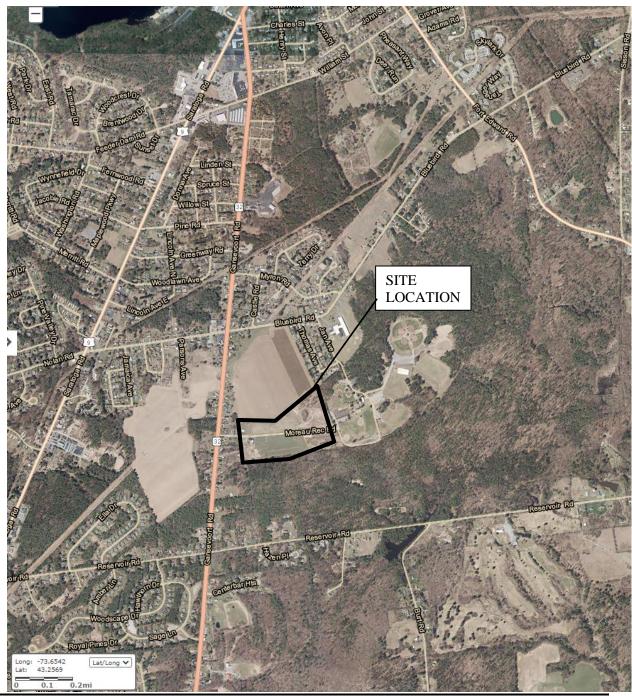
NYSDEC, 1992. "Reducing the Impacts of Stormwater Runoff from New Development", New York State Department of Environmental Conservation, Division of Water.

NYSDEC, 2015. "New York State Stormwater Management Design Manual", Center for Watershed Protection, Ellicott City, MD.

Rawls, W.J., Brakensiek, D.L., and Saxton, K. E., 1982. "Estimation of Soil Properties", Transactions of the American Society of Agricultural Engineers, Vol. 25, No. J, pp. 1316-1320.

S.C.S., 1982. "TR-20 Project Formulation-Hydrology, Technical Release No. 20", U.S. Department of Agriculture, Soil Conservation Service, Hydrology Unit Division of Engineering.

United States Department of Agriculture, Web Soil Survey. Retrieved from https://websoilsurvey.sc.egov.usda.gov

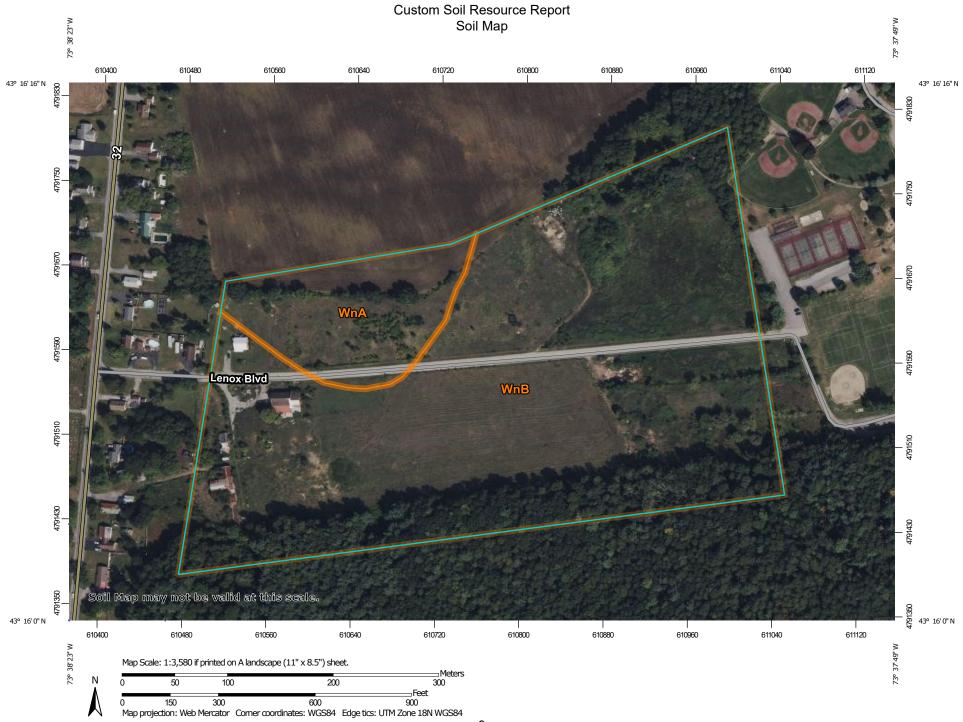


Figures

- 1. Site Location map
 - 2. Site Soils Data
- 3. Pre-Development Drainage Map
- 4. Post-Development Drainage Map

Figure 1: Site Location Map

900 Route 146, Clifton Park, New York 12065 phone (518) 371-7621 e-mail: info@edpllp.com 18



United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Saratoga County, New York

	MAP L	EGEND)	MAP INFORMATION
Area of Int	terest (AOI)	88	Spoil Area	The soil surveys that comprise your AOI were mapped at
	Area of Interest (AOI)	٥	Stony Spot	1:24,000.
Soils	Soil Map Unit Polygons	۵	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
~	Soil Map Unit Lines	\$	Wet Spot	Enlargement of maps beyond the scale of mapping can cause
	Soil Map Unit Points	\triangle	Other	misunderstanding of the detail of mapping and accuracy of soil
_	Point Features	, * *	Special Line Features	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed
ల	Blowout	Water Fea		scale.
	Borrow Pit	\sim	Streams and Canals	
×	Clay Spot	Transport	tation Rails	Please rely on the bar scale on each map sheet for map measurements.
0	Closed Depression	+++		measurements.
×	Gravel Pit	$\tilde{}$	Interstate Highways US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
0.0	Gravelly Spot	~	Major Roads	Coordinate System: Web Mercator (EPSG:3857)
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator
Ă.	Lava Flow	Backgrou		projection, which preserves direction and shape but distorts
<u>بلد</u>	Marsh or swamp	Backgrou	Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
~	Mine or Quarry			accurate calculations of distance or area are required.
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as
õ	Perennial Water			of the version date(s) listed below.
\vee	Rock Outcrop			Soil Survey Area: Saratoga County, New York
+	Saline Spot			Survey Area Data: Version 24, Aug 29, 2024
÷.	Sandy Spot			Soil map units are labeled (as space allows) for map scales
-	Severely Eroded Spot			1:50,000 or larger.
0	Sinkhole			Date(s) aerial images were photographed: Sep 9, 2022—Oct 22,
ý	Slide or Slip			2022
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol Map Unit Name		Acres in AOI	Percent of AOI		
WnA	Windsor loamy sand, 0 to 3 percent slopes	5.2	13.3%		
WnB	Windsor loamy sand, 3 to 8 percent slopes	33.9	86.7%		
Totals for Area of Interest	- I	39.1	100.0%		

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Saratoga County, New York

WnA—Windsor loamy sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2svkg Elevation: 0 to 990 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Windsor, loamy sand, and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Windsor, Loamy Sand

Setting

Landform: Outwash plains, outwash terraces, deltas, dunes Landform position (three-dimensional): Tread, riser Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Loose sandy glaciofluvial deposits derived from granite and/or loose sandy glaciofluvial deposits derived from schist and/or loose sandy glaciofluvial deposits derived from gneiss

Typical profile

O - 0 to 1 inches: moderately decomposed plant material

A - 1 to 3 inches: loamy sand

Bw - 3 to 25 inches: loamy sand

C - 25 to 65 inches: sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Ecological site: F144AY022MA - Dry Outwash Hydric soil rating: No

Minor Components

Deerfield, loamy sand

Percent of map unit: 10 percent Landform: Deltas, terraces, outwash plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Hinckley, loamy sand

Percent of map unit: 5 percent Landform: Deltas, kames, eskers, outwash plains Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest, head slope, rise Down-slope shape: Convex Across-slope shape: Convex, linear Hydric soil rating: No

WnB—Windsor loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svkf Elevation: 0 to 1,210 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 250 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Windsor and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Windsor

Setting

Landform: Outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Loose sandy glaciofluvial deposits derived from granite and/or schist and/or gneiss

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material *A - 1 to 3 inches:* loamy sand *Bw - 3 to 25 inches:* loamy sand

C - 25 to 65 inches: sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Ecological site: F145XY008MA - Dry Outwash Hydric soil rating: No

Minor Components

Hinckley

Percent of map unit: 10 percent Landform: Eskers Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Ecological site: F145XY008MA - Dry Outwash Hydric soil rating: No

Deerfield, loamy sand

Percent of map unit: 5 percent Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: F144AY027MA - Moist Sandy Outwash Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

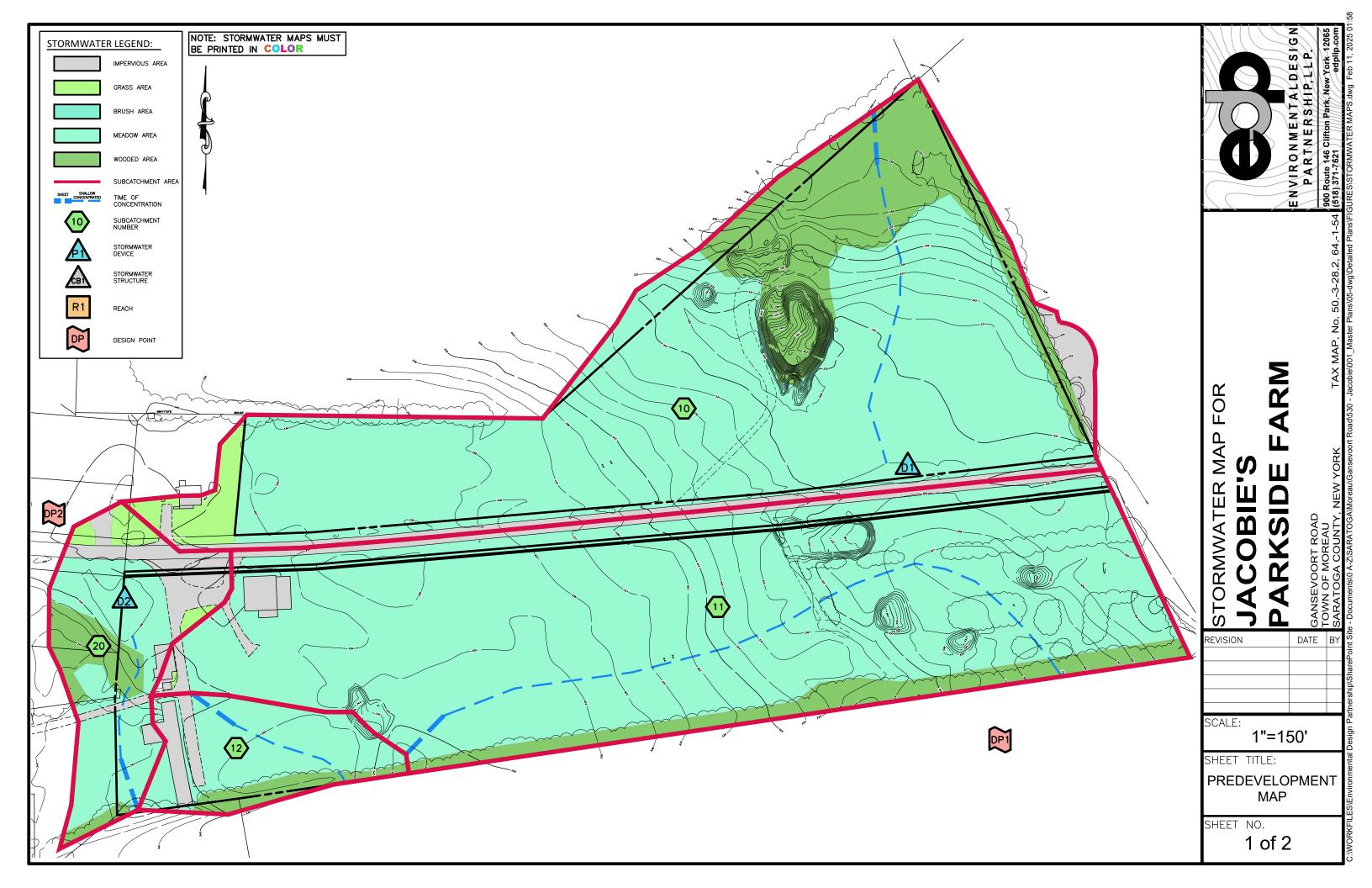
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

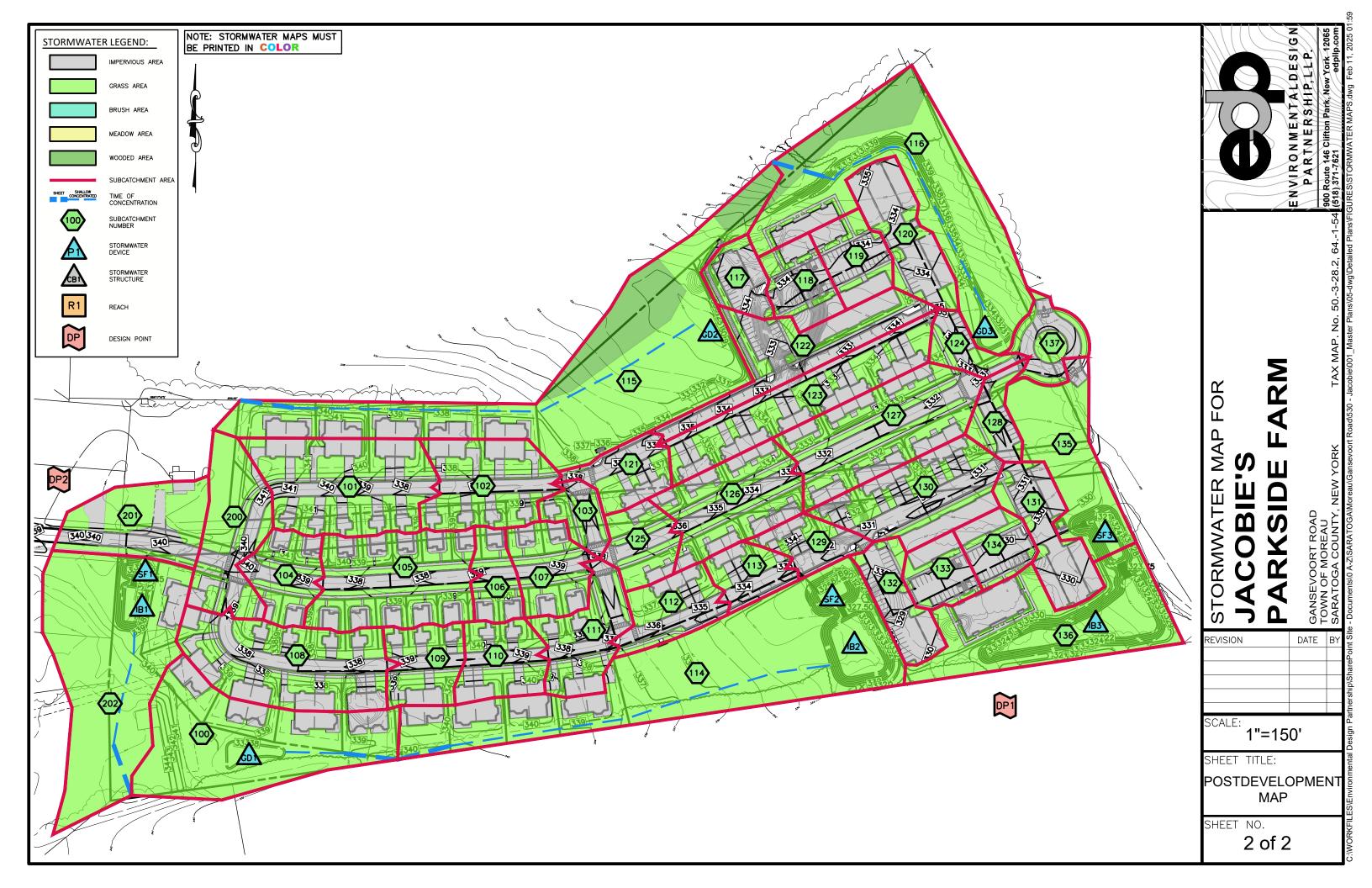
Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.


United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374


United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Appendix A

Water Quality Calculation Runoff Reduction Calculation Infiltration Basin Calculations

Step 2 - Calculate Water Quality Volume

Is this project su Removal?	bject to Section	4.3 of the NYS De	sign Manual for Er	hanced Phos	phorus	No
What is the natu	re of this constr	ruction project?	New Construction			
Design Point:			Er.	nter 90% Rain	foll Event on	D
P=	1.10	inches		ilei 90% Rain	iali Eveni as	F
		Calcula	ate Required WQ	/		
Drainage Area Number	Contributing Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (cf)	SMP Description
1	3.73	0.78	21	0.24	3,554	Infiltration Basin
2	11.44	5.25	46	0.46	21,133	Infiltration Basin
3	12.82	7.58	59	0.58	29,784	Infiltration Basin
4	0.64	0.64	100	0.95	2,413	Disconnection of Rooftop Runoff
5						
6						
7						
8						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25 26						
26 27						
27						
28						
30						
Total	28.62	14.24	50	0.50	56884	Required WQv

NOI QUESTIONS

#	NOI Question	Reported Value			
		cf	af		
28	Total Water Quality Volume (WQv) Required	56884	1.306		
30	Total RRV Provided 56884				
31	RRv Provided ≥WQv Required? Yes				
32	Minimum RRv	29708	0.682		
32a	Is RRv Provided ≥ Minimum RRv Required?	Yes			
33a	Total WQv Treated	0	0.000		
34	Sum of Volume Reduced & Treated	56884	1.306		
35	Is Sum RRv Provided and WQv Provided ≥WQv Required?	Yes			

Infiltration Basin (I-2)

Design Point:							
	Enter	Site Data For	Drainage Are	a to be	Treated by	Practice	
Drainage Area Number	Contributing Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (cf)	Precipitation (in)	Description
1	3.73	0.78	21	0.24	3,554	1.10	Infiltration Basin
			Design Cri	teria			
Enter underlying s geotechnical testi		•	8.27				
Is the contributing "Infiltration Restrie			No				
Is the contributing "Infiltration Prohib			No				
Maximum contrib	uting area (acr	es)	25				
Is the contributing maximum allowed			No				
Enter depth to sea	asonal high wa	ter table (ft)	8				
Enter depth to be	drock (ft)		8				
Enter pretreatmer		ded (cf)	893				
Enter depth of fre	()		1				
Enter depth of ba	()		4				
Enter slope of ma		()	2				
Enter width of ma	aintenance acce	ess (ft)	12				
			Sizing Crit			Notes	
Water Quality Valuma			3554	Units cf		notes	
Water Quality Volume WQv			ft				
	Basin depthdbRequired Surface AreaAb		4.0				
· ·		Ab	889	sf			
Enter Surface A	Enter Surface Area Provided Ab 1482 sf						
DD- Dresident	Determine Runoff Reduction						
RRv Provided		3,554	cf				

Infiltration Basin (I-2)

Design Point:										
	Enter Site Data For Drainage Area to be Treated by Practice									
Drainage Area Number	Contributing Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQ∨ (cf)	Precipitation (in)	Description			
2	11.44	5.25	46	0.46	21,133	1.10	Infiltration Basin			
		-	Design Cri	iteria						
Enter underlying geotechnical tes		· ·	8.27							
Is the contributin "Infiltration Restr			No							
Is the contributin "Infiltration Prohi			No							
Maximum contril	buting area (acr	es)	25							
Is the contributin maximum allowe			No							
Enter depth to se	easonal high wa	ter table (ft)	8							
Enter depth to be	edrock (ft)		8							
Enter pretreatme		ided (cf)	5454							
Enter depth of fr			1							
Enter depth of ba	()		5							
Enter slope of m		. ,	2							
Enter width of m	aintenance acce	ess (ft)	12							
			Sizing Cri	teria	-					
				Units		Notes				
Water Quality Volume WQv			21133	cf						
Basin	depth	db	5.0	ft						
Required Su	urface Area	Ab	4,227.00	sf						
Enter Surface	Area Provided	Ab	7666	sf						
	Determine Runoff Reduction									
RRv Provided	Rv Provided 21,133 <i>cf</i>									

Infiltration Basin (I-2)

Design Point:							
		Site Data For	Drainage Are	a to be 🛛	Treated by	Practice	
Drainage Area Number	Contributing Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQ∨ (cf)	Precipitation (in)	Description
3	12.82	7.58	59	0.58	29,784	1.10	Infiltration Basin
Design Criteria							
geotechnical tes	g soil infiltration r sting, refer to App	pendix D)	8.27				
	ricted" stormwat	er hotspot?	No				
Is the contributir "Infiltration Proh	ng area to the pra ibited" stormwat		No				
Maximum contri	buting area (acr	es)	25				
Is the contributir maximum allow			No				
Enter depth to s		ter table (ft)	8				
Enter depth to b	· · · ·		8				
Enter pretreatme		ded (cf)	8078				
Enter depth of fr	reeboard (ft)		1				
Enter depth of b	asin (ft)		4				
Enter slope of m	naintenance acce	ess (%)	2				
Enter width of m	aintenance acce	ess (ft)	12				
			Sizing Crit	teria			
			Value	Units		Notes	
Water Qua	lity Volume	WQv	29784	cf			
Basin depth db			4.0	ft			
Required S	Required Surface Area Ab			sf			
Enter Surface	Area Provided	Ab	13509	sf			
	Determine Runoff Reduction						
RRv Provided		29,784	cf				

Disconnection of Rooftop Runoff (RR-4)

Design Point:							
		Enter Site Da	ta For Draina	ge Area to b	e Reduce	d	
Drainage Area Number	Contributing Area (Acres)	Impervious Area (Acres)	Area Impervious		WQv (cf)	Precipitation (in)	Description
4	0.64	0.64	0.64 100 0.95 2,413		1.10	Disconnection of Rooftop Runoff	
			Design C	riteria			
Will disconnected runof flow over HSG C or D soils? No							
Is the contributing area to each filter path greater than 1,000 sf? No							
Enter the flow length of the contirbuting area (ft) 50							
Enter the width of the filter path (ft)						10	
Enter the length	Enter the length of the filter path (ft) 250						
Enter the filter path slope						2	
		Are	a Reduction	Adjustments	5		
RRv Provided	RRv Provided 2,413 cf						

Jacobie's Parkside Farm 3/26/2025 JAC

Minimum Infiltration Bottom Area Equation

A = Vw/db

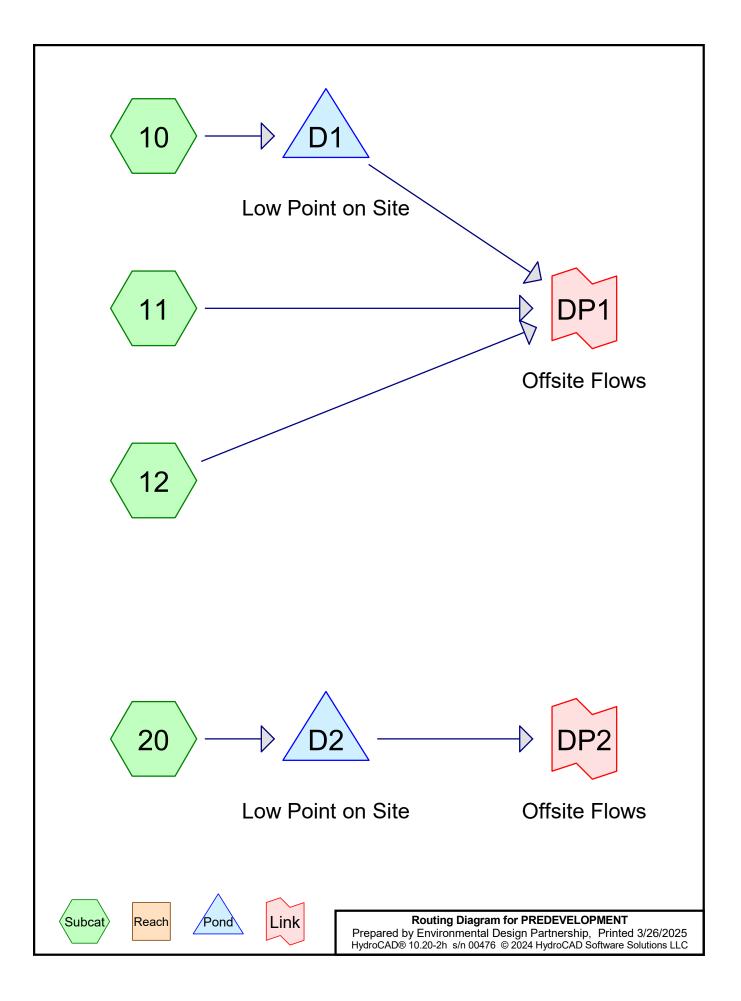
		Infiltration Basin #1 Infiltration Basin #		Infiltration Basin #3	
Vw	Design Volume (WQv) (cf)	3554.0	21133.0	29784.0	
db	Depth of the basin (ft)	4.0	5.0	4.0	
Α	Minimum surface area of the basin (sf)	889	4227	7446	

Equation taken from New York State Stormwater Management Design Manual, Section 6.3.4.2

1482	7666	13509

Draindown Time (<48 hr required)*

	Infiltration Basin #1	Infiltration Basin #2	Infiltration Basin #3
Total 100-Year Storm Volume (cf)	18730	103542	152068
Design Infiltration Rate (in/hr)	8.27	8.27	8.27
Draindown Time Provided (hr)	18.3	19.6	16.3


*Equation taken from New York State Stormwater Management Design Manual, Section 6.3.2.4

Design Volume (100yr) taken from analyzing the 100-year storm event in HydroCAD contributing to each SMA

Appendix B

Stormwater Modeling Calculations

Area Listing (selected nodes)

Area	CN	Description	
(acres)		(subcatchment-numbers)	
0.568	39	>75% Grass cover, Good, HSG A (10, 11, 20)	
27.367	39	Pasture/grassland/range, Good, HSG A (10, 11, 12, 20)	
2.435	98	Paved parking, HSG A (10, 11, 12, 20)	
4.842	30	Woods, Good, HSG A (10, 11, 12, 20)	
35.213	42	TOTAL AREA	

Type II 24-hr 1-YEAR Rainfall=2.22" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Subcatchment 10:	Runoff Area=667,139 sf 5.41% Impervious Runoff Depth=0.00" Flow Length=675' Tc=36.3 min CN=40 Runoff=0.00 cfs 0.000 af
Subcatchment 11:	Runoff Area=670,797 sf 4.99% Impervious Runoff Depth=0.00" Flow Length=1,385' Tc=30.5 min CN=41 Runoff=0.00 cfs 0.000 af
Subcatchment 12:	Runoff Area=77,932 sf 12.66% Impervious Runoff Depth=0.00" Flow Length=338' Tc=25.5 min CN=45 Runoff=0.00 cfs 0.000 af
Subcatchment 20:	Runoff Area=118,006 sf 22.60% Impervious Runoff Depth=0.01" Flow Length=338' Tc=19.5 min CN=51 Runoff=0.00 cfs 0.002 af
Pond D1: Low Point on Site Discarded=0.0	Peak Elev=329.00' Storage=0 cf Inflow=0.00 cfs 0.000 af 00 cfs 0.000 af Primary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond D2: Low Point on Site Discarded=0.0	Peak Elev=339.00' Storage=0 cf Inflow=0.00 cfs 0.002 af 00 cfs 0.002 af Primary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.002 af
Link DP1: Offsite Flows	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af
Link DP2: Offsite Flows	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Type II 24-hr 10-YEAR Rainfall=3.70" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Subcatchment 10:	Runoff Area=667,139 sf 5.41% Impervious Runoff Depth=0.03" Flow Length=675' Tc=36.3 min CN=40 Runoff=0.05 cfs 0.040 af
Subcatchment 11:	Runoff Area=670,797 sf 4.99% Impervious Runoff Depth=0.04" Flow Length=1,385' Tc=30.5 min CN=41 Runoff=0.07 cfs 0.057 af
Subcatchment 12:	Runoff Area=77,932 sf 12.66% Impervious Runoff Depth=0.12" Flow Length=338' Tc=25.5 min CN=45 Runoff=0.03 cfs 0.017 af
Subcatchment 20:	Runoff Area=118,006 sf 22.60% Impervious Runoff Depth=0.28" Flow Length=338' Tc=19.5 min CN=51 Runoff=0.30 cfs 0.063 af
Pond D1: Low Point on Site Discarded=0.0	Peak Elev=329.00' Storage=3 cf Inflow=0.05 cfs 0.040 af 5 cfs 0.040 af Primary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.040 af
Pond D2: Low Point on Site Discarded=0.3	Peak Elev=339.00' Storage=16 cf Inflow=0.30 cfs 0.063 af 0 cfs 0.063 af Primary=0.00 cfs 0.000 af Outflow=0.30 cfs 0.063 af
Link DP1: Offsite Flows	Inflow=0.09 cfs 0.074 af Primary=0.09 cfs 0.074 af
Link DP2: Offsite Flows	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Subcatchment 10:	Runoff Area=667,139 sf 5.41% Impervious Runoff Depth=0.56" Flow Length=675' Tc=36.3 min CN=40 Runoff=2.99 cfs 0.718 af
Subcatchment 11:	Runoff Area=670,797 sf 4.99% Impervious Runoff Depth=0.62" Flow Length=1,385' Tc=30.5 min CN=41 Runoff=4.04 cfs 0.800 af
Subcatchment 12:	Runoff Area=77,932 sf 12.66% Impervious Runoff Depth=0.88" Flow Length=338' Tc=25.5 min CN=45 Runoff=0.99 cfs 0.132 af
Subcatchment 20:	Runoff Area=118,006 sf 22.60% Impervious Runoff Depth=1.32" Flow Length=338' Tc=19.5 min CN=51 Runoff=3.36 cfs 0.298 af
Pond D1: Low Point on Site Discarded=2.3	Peak Elev=329.16' Storage=1,425 cf Inflow=2.99 cfs 0.718 af 3 cfs 0.718 af Primary=0.00 cfs 0.000 af Outflow=2.33 cfs 0.718 af
Pond D2: Low Point on Site Discarded=2.04	Peak Elev=339.12' Storage=1,130 cf Inflow=3.36 cfs 0.298 af 4 cfs 0.298 af Primary=0.00 cfs 0.000 af Outflow=2.04 cfs 0.298 af
Link DP1: Offsite Flows	Inflow=4.92 cfs 0.931 af Primary=4.92 cfs 0.931 af
Link DP2: Offsite Flows	Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Subcatchment 10:

Runoff = 2.99 cfs @ 12.49 hrs, Volume= 0.718 af, Depth= 0.56" Routed to Pond D1 : Low Point on Site

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

A	rea (sf)	CN E	Description					
	36,084	98 F	Paved parking, HSG A					
1	28,902	30 V	Woods, Good, HSG A					
4	84,331	39 F	Pasture/gra	ssland/rang	ge, Good, HSG A			
	17,822	39 >	75% Gras	s cover, Go	ood, HSG A			
6	67,139	40 Weighted Average						
6	631,055 94.59% Pervious Area			vious Area				
	36,084	5.41% Impervious Area			а			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
31.6	100	0.0100	0.05		Sheet Flow, Sheet			
					Woods: Light underbrush n= 0.400 P2= 2.58"			
4.7	575	0.0160	2.04		Woods: Light underbrush n= 0.400 P2= 2.58" Shallow Concentrated Flow, Shallow			
4.7	575	0.0160	2.04		0			

Summary for Subcatchment 11:

Runoff	=	4.04 cfs @	12.37 hrs,	Volume=
Route	d to Lir	nk DP1 : Offsite	Flows	

0.800 af, Depth= 0.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

	A	rea (sf)	CN [Description					
		33,473	98 F	Paved parking, HSG A					
		47,637	30 N	Woods, Good, HSG A					
	5	89,387	39 F	Pasture/grassland/range, Good, HSG A					
_		300	39 >	75% Gras	s cover, Go	ood, HSG A			
	670,797 41 Weighted Average			Veighted A	verage				
	6	37,324	ç	5.01% Per	vious Area				
		33,473 4.99% Impervious Area			ervious Area	а			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
_	17.8	100	0.0150	0.09		Sheet Flow, Sheet			
						Grass: Dense n= 0.240 P2= 2.58"			
	12.7	1,285	0.0110	1.69		Shallow Concentrated Flow, Shallow			
_						Unpaved Kv= 16.1 fps			
	30.5	1,385	Total						

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Subcatchment 12:

Runoff = 0.99 cfs @ 12.26 hrs, Volume= 0 Routed to Link DP1 : Offsite Flows

0.132 af, Depth= 0.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

A	rea (sf)	CN E	Description		
	9,867	98 F	aved park	ing, HSG A	
	12,568	30 V	Voods, Go	od, HSG A	
	55,497	39 F	Pasture/gra	ssland/rang	ge, Good, HSG A
	0	39 >	75% Gras	s cover, Go	ood, HSG A
	77,932	45 V	Veighted A	verage	
	68,065	8	7.34% Per	vious Area	
	9,867	1	2.66% Imp	pervious Are	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	-
<u>(min)</u> 21.0	(feet) 100		(ft/sec) 0.08	(cfs)	Sheet Flow, Sheet
/		(ft/ft)		(cfs)	Sheet Flow, Sheet Grass: Dense n= 0.240 P2= 2.58"
/		(ft/ft)		(cfs)	•
21.0	100	(ft/ft) 0.0100	0.08	(cfs)	Grass: Dense n= 0.240 P2= 2.58"

Summary for Subcatchment 20:

Runoff	=	3.36 cfs @	12.15 hrs,	Volume=	
Route	d to Por	nd D2 : Low Po	oint on Site		

0.298 af, Depth= 1.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

A	rea (sf)	CN E	Description			
	26,664	98 F	aved park	ing, HSG A		
	21,814	30 V	Voods, Go	od, HSG A		
	62,913	39 F	Pasture/gra	ssland/rang	ge, Good, HSG A	
	6,615	39 >	75% Gras	s cover, Go	ood, HSG A	
1	18,006	51 V	Veighted A	verage		
	91,342	7	7.40% Per	vious Area		
	26,664	2	2.60% Imp	pervious Are	ea	
Тс	Length	Slope	Velocity	Capacity	Description	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	•				Description Sheet Flow, Sheet	
(min)	(feet)	(ft/ft)	(ft/sec)			
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Sheet	
<u>(min)</u> 17.8	(feet) 100	(ft/ft) 0.0150	(ft/sec) 0.09		Sheet Flow, Sheet Grass: Dense n= 0.240 P2= 2.58"	

Summary for Pond D1: Low Point on Site

Inflow Area = 15.315 ac, 5.41% Impervious, Inflow Depth = 0.56" for 100-YEAR event Inflow = 2.99 cfs @ 12.49 hrs, Volume= 0.718 af Outflow = 2.33 cfs @ 12.77 hrs, Volume= 0.718 af, Atten= 22%, Lag= 17.0 min Discarded = 2.33 cfs @ 12.77 hrs, Volume= 0.718 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Routed to Link DP1 : Offsite Flows Flows 0.000 af						
	id method, Time Spar 6' @ 12.77 hrs Surf.					
	on time= 3.1 min calc et. time= 3.1 min (97		100% of inflow)			
Volume Inve	ert Avail.Storage	Storage Description	on			
#1 329.0	00' 32,883 cf	Low Point (Irregu	l lar) Listed below (Re	ecalc)		
Elevation	Surf.Area Perim.	Inc.Store	Cum.Store	Wet.Area		
(feet)	(sq-ft) (feet)		(cubic-feet)	(sq-ft)		
329.00	6,650 527.0		0	6,650		
329.35	20,000 675.0		4,455	20,808		
330.00	73,000 1,055.0	28,429	32,883	73,125		
Device Routing	Invert Out	let Devices				
#1 Primary	329.35' 225 Hea 2.50 Coe	.0' long x 5.0' brea ad (feet) 0.20 0.40 0 3.00 3.50 4.00 4 ef. (English) 2.34 2	1.50 5.00 5.50	0 1.40 1.60 1.80 2.00 2.66 2.65 2.65 2.65		
#2 Discarde			over Wetted area			
	W Max=2.33 cfs @ (Exfiltration Controls		16' (Free Discharge	2)		
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=329.00' (Free Discharge) ☐1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)						
Summary for Pond D2: Low Point on Site						
Inflow Area = Inflow = Outflow = Discarded = Primary =	3.36 cfs @ 12.15 2.04 cfs @ 12.32 2.04 cfs @ 12.32	,	0.298 af	100-YEAR event 39%, Lag= 10.4 min		

Routed to Link DP2 : Offsite Flows

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 339.12' @ 12.32 hrs Surf.Area= 10,897 sf Storage= 1,130 cf

Plug-Flow detention time= 2.9 min calculated for 0.298 af (100% of inflow)

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Volume	Inve	ert Avail	.Storage	Storage Description	on		
#1	339.0	10'	12,755 cf	Custom Stage Da	ata (Irregular) Liste	ed below (Recalc)	
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
339.0 339.5)0 50	8,759 19,725	426.0 565.0	0 6,938	0 6,938	8,759 19,724	
339.7	75	27,000	675.0	5,817	12,755	30,579	
Device	Routing	١n	vert Outle	et Devices			
#1	Primary	339.	Hea 2.50	d (feet) 0.20 0.40 3.00 3.50 4.00 4	0.60 0.80 1.00 1 4.50	Rectangular Weir 1.20 1.40 1.60 1.80 2.0	
				f. (English) 2.44 2 2.81 2.92 2.97 3		5 2.64 2.64 2.68 2.68	
#2	Discarde	d 339.	.00' 8.00	0 in/hr Exfiltration	over Wetted area	Phase-In= 0.01'	
Discourd		Max-0 (0.00 hms 1110/-000	111 (Erec Dischor		

Center-of-Mass det. time= 2.9 min (900.3 - 897.4)

Discarded OutFlow Max=2.04 cfs @ 12.32 hrs HW=339.11' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 2.04 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=339.00' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP1: Offsite Flows


Inflow Area	a =	32.504 ac,	5.61% Impervious	, Inflow Depth =	0.34" for 100-YEAR event
Inflow	=	4.92 cfs @	12.35 hrs, Volum	e= 0.931	af
Primary	=	4.92 cfs @	12.35 hrs, Volum	e= 0.931	af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Summary for Link DP2: Offsite Flows

Inflow Area = 2.709 ac, 22.60% Impervious, Inflow Depth = 0.00" for 100-YEAR event Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min Routed to nonexistent node T

Primary outflow = Inflow, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Area Listing (selected nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
19.831	39	>75% Grass cover, Good, HSG A (100, 101, 102, 103, 104, 105, 106, 107, 108,
		109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,
		125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 200, 201, 202)
14.239	98	Paved parking, HSG A (100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
		111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
		127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 200, 201, 202)
1.143	30	Woods, Good, HSG A (115, 116)
35.213	63	TOTAL AREA

Type II 24-hr 1-YEAR Rainfall=2.22" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Subcatchment 100:	Runoff Area=74,329 sf 16.96% Impervious Runoff Depth=0.00" Flow Length=210' Tc=15.6 min CN=49 Runoff=0.00 cfs 0.000 af
Subcatchment 101:	Runoff Area=54,281 sf 57.36% Impervious Runoff Depth=0.42" Tc=6.0 min CN=73 Runoff=0.83 cfs 0.044 af
Subcatchment 102:	Runoff Area=36,233 sf 59.73% Impervious Runoff Depth=0.46" Tc=6.0 min CN=74 Runoff=0.61 cfs 0.032 af
Subcatchment 103:	Runoff Area=11,117 sf 62.22% Impervious Runoff Depth=0.53" Tc=6.0 min CN=76 Runoff=0.23 cfs 0.011 af
Subcatchment 104:	Runoff Area=19,650 sf 62.14% Impervious Runoff Depth=0.53" Tc=6.0 min CN=76 Runoff=0.40 cfs 0.020 af
Subcatchment 105:	Runoff Area=51,062 sf 51.48% Impervious Runoff Depth=0.30" Tc=6.0 min CN=69 Runoff=0.48 cfs 0.029 af
Subcatchment 106:	Runoff Area=13,502 sf 56.45% Impervious Runoff Depth=0.39" Tc=6.0 min CN=72 Runoff=0.19 cfs 0.010 af
Subcatchment 107:	Runoff Area=22,060 sf 52.65% Impervious Runoff Depth=0.33" Tc=6.0 min CN=70 Runoff=0.24 cfs 0.014 af
Subcatchment 108:	Runoff Area=56,180 sf 59.77% Impervious Runoff Depth=0.46" Tc=6.0 min CN=74 Runoff=0.95 cfs 0.049 af
Subcatchment 109:	Runoff Area=20,376 sf 56.51% Impervious Runoff Depth=0.39" Tc=6.0 min CN=72 Runoff=0.28 cfs 0.015 af
Subcatchment 110:	Runoff Area=21,717 sf 58.53% Impervious Runoff Depth=0.46" Tc=6.0 min CN=74 Runoff=0.37 cfs 0.019 af
Subcatchment 111:	Runoff Area=26,818 sf 62.64% Impervious Runoff Depth=0.53" Tc=6.0 min CN=76 Runoff=0.54 cfs 0.027 af
Subcatchment 112:	Runoff Area=20,564 sf 64.02% Impervious Runoff Depth=0.57" Tc=6.0 min CN=77 Runoff=0.45 cfs 0.022 af
Subcatchment 113:	Runoff Area=14,080 sf 66.62% Impervious Runoff Depth=0.61" Tc=6.0 min CN=78 Runoff=0.34 cfs 0.016 af
Subcatchment 114:	Runoff Area=130,655 sf 10.65% Impervious Runoff Depth=0.00" Flow Length=825' Tc=22.0 min CN=45 Runoff=0.00 cfs 0.000 af
Subcatchment 115:	Runoff Area=142,084 sf 6.01% Impervious Runoff Depth=0.00" Flow Length=885' Tc=28.1 min CN=41 Runoff=0.00 cfs 0.000 af

Type II 24-hr 1-YEAR Rainfall=2.22" Printed 3/26/2025

Subcatchment 116:	Runoff Area=98,654 sf 6.63% Impervious Runoff Depth=0.00" Flow Length=600' Tc=21.9 min CN=41 Runoff=0.00 cfs 0.000 af
Subcatchment 117:	Runoff Area=13,263 sf 78.56% Impervious Runoff Depth=0.96" Tc=6.0 min CN=85 Runoff=0.51 cfs 0.024 af
Subcatchment 118:	Runoff Area=17,532 sf 81.82% Impervious Runoff Depth=1.08" Tc=6.0 min CN=87 Runoff=0.75 cfs 0.036 af
Subcatchment 119:	Runoff Area=17,804 sf 81.03% Impervious Runoff Depth=1.08" Tc=6.0 min CN=87 Runoff=0.76 cfs 0.037 af
Subcatchment 120:	Runoff Area=27,151 sf 85.92% Impervious Runoff Depth=1.28" Tc=6.0 min CN=90 Runoff=1.36 cfs 0.067 af
Subcatchment 121:	Runoff Area=17,345 sf 69.56% Impervious Runoff Depth=0.70" Tc=6.0 min CN=80 Runoff=0.48 cfs 0.023 af
Subcatchment 122:	Runoff Area=38,222 sf 77.66% Impervious Runoff Depth=0.96" Tc=6.0 min CN=85 Runoff=1.47 cfs 0.070 af
Subcatchment 123:	Runoff Area=44,152 sf 64.82% Impervious Runoff Depth=0.57" Tc=6.0 min CN=77 Runoff=0.97 cfs 0.048 af
Subcatchment 124:	Runoff Area=10,890 sf 63.50% Impervious Runoff Depth=0.53" Tc=6.0 min CN=76 Runoff=0.22 cfs 0.011 af
Subcatchment 125:	Runoff Area=17,386 sf 48.85% Impervious Runoff Depth=0.27" Tc=6.0 min CN=68 Runoff=0.14 cfs 0.009 af
Subcatchment 126:	Runoff Area=37,997 sf 55.45% Impervious Runoff Depth=0.39" Tc=6.0 min CN=72 Runoff=0.52 cfs 0.028 af
Subcatchment 127:	Runoff Area=53,483 sf 56.34% Impervious Runoff Depth=0.39" Tc=6.0 min CN=72 Runoff=0.73 cfs 0.040 af
Subcatchment 128:	Runoff Area=11,458 sf 65.54% Impervious Runoff Depth=0.61" Tc=6.0 min CN=78 Runoff=0.27 cfs 0.013 af
Subcatchment 129:	Runoff Area=13,905 sf 74.47% Impervious Runoff Depth=0.85" Tc=6.0 min CN=83 Runoff=0.47 cfs 0.023 af
Subcatchment 130:	Runoff Area=41,588 sf 71.22% Impervious Runoff Depth=0.75" Tc=6.0 min CN=81 Runoff=1.24 cfs 0.060 af
Subcatchment 131:	Runoff Area=25,360 sf 86.45% Impervious Runoff Depth=1.28" Tc=6.0 min CN=90 Runoff=1.27 cfs 0.062 af
Subcatchment 132:	Runoff Area=18,424 sf 84.33% Impervious Runoff Depth=1.21" Tc=6.0 min CN=89 Runoff=0.88 cfs 0.043 af

Type II 24-hr 1-YEAR Rainfall=2.22" Printed 3/26/2025

Subcatchment 133:	Runoff Area=14,378 sf 84.75% Impervious Runoff Depth=1.21" Tc=6.0 min CN=89 Runoff=0.69 cfs 0.033 af
Subcatchment 134:	Runoff Area=14,757 sf 84.85% Impervious Runoff Depth=1.21" Tc=6.0 min CN=89 Runoff=0.70 cfs 0.034 af
Subcatchment 135:	Runoff Area=41,379 sf 4.83% Impervious Runoff Depth=0.00" Tc=6.0 min CN=42 Runoff=0.00 cfs 0.000 af
Subcatchment 136:	Runoff Area=65,874 sf 15.80% Impervious Runoff Depth=0.00" Tc=6.0 min CN=48 Runoff=0.00 cfs 0.000 af
Subcatchment 137:	Runoff Area=15,856 sf 53.32% Impervious Runoff Depth=0.33" Tc=6.0 min CN=70 Runoff=0.17 cfs 0.010 af
Subcatchment 200:	Runoff Area=35,008 sf 44.99% Impervious Runoff Depth=0.22" Tc=6.0 min CN=66 Runoff=0.20 cfs 0.015 af
Subcatchment 201:	Runoff Area=33,949 sf 43.53% Impervious Runoff Depth=0.20" Tc=6.0 min CN=65 Runoff=0.15 cfs 0.013 af
Subcatchment 202:	Runoff Area=93,345 sf 3.80% Impervious Runoff Depth=0.00" Flow Length=313' Tc=19.4 min CN=41 Runoff=0.00 cfs 0.000 af
Pond #106:	Peak Elev=328.70' Inflow=0.17 cfs 0.010 af 12.0" Round Culvert n=0.012 L=85.0' S=0.0176 '/' Outflow=0.17 cfs 0.010 af
Pond #14:	Peak Elev=334.62' Inflow=0.83 cfs 0.044 af 15.0" Round Culvert n=0.012 L=227.0' S=0.0048 '/' Outflow=0.83 cfs 0.044 af
Pond #15:	Peak Elev=333.70' Inflow=1.44 cfs 0.076 af 15.0" Round Culvert n=0.012 L=55.0' S=0.0055 '/' Outflow=1.44 cfs 0.076 af
Pond #16:	Peak Elev=333.14' Inflow=1.66 cfs 0.087 af 18.0" Round Culvert n=0.012 L=100.0' S=0.0055 '/' Outflow=1.66 cfs 0.087 af
Pond #18:	Peak Elev=332.17' Inflow=2.96 cfs 0.160 af 24.0" Round Culvert n=0.012 L=139.0' S=0.0090 '/' Outflow=2.96 cfs 0.160 af
Pond #20:	Peak Elev=331.23' Inflow=5.10 cfs 0.271 af 24.0" Round Culvert n=0.012 L=218.0' S=0.0055 '/' Outflow=5.10 cfs 0.271 af
Pond #28:	Peak Elev=334.69' Inflow=0.87 cfs 0.049 af 15.0" Round Culvert n=0.012 L=147.0' S=0.0048 '/' Outflow=0.87 cfs 0.049 af
Pond #29:	Peak Elev=333.98' Inflow=1.06 cfs 0.059 af 18.0" Round Culvert n=0.012 L=222.0' S=0.0059 '/' Outflow=1.06 cfs 0.059 af
Pond #32:	Peak Elev=334.31' Inflow=0.95 cfs 0.049 af 15.0" Round Culvert n=0.012 L=163.0' S=0.0049 '/' Outflow=0.95 cfs 0.049 af

Type II 24-hr 1-YEAR Rainfall=2.22" Printed 3/26/2025

Pond #33:	Peak Elev=333.58' Inflow=1.23 cfs 0.064 af 15.0" Round Culvert n=0.012 L=297.0' S=0.0051 '/' Outflow=1.23 cfs 0.064 af
Pond #34:	Peak Elev=331.90' Inflow=1.59 cfs 0.083 af 18.0" Round Culvert n=0.012 L=128.0' S=0.0043 '/' Outflow=1.59 cfs 0.083 af
Pond #38:	Peak Elev=332.65' Inflow=0.48 cfs 0.023 af 12.0" Round Culvert n=0.012 L=285.0' S=0.0111 '/' Outflow=0.48 cfs 0.023 af
Pond #39:	Peak Elev=329.54' Inflow=2.92 cfs 0.142 af 18.0" Round Culvert n=0.012 L=393.0' S=0.0042 '/' Outflow=2.92 cfs 0.142 af
Pond #45:	Peak Elev=327.36' Inflow=1.24 cfs 0.060 af 12.0" Round Culvert n=0.012 L=195.0' S=0.0064 '/' Outflow=1.24 cfs 0.060 af
Pond #49:	Peak Elev=330.06' Inflow=1.47 cfs 0.070 af 12.0" Round Culvert n=0.012 L=22.0' S=0.0091 '/' Outflow=1.47 cfs 0.070 af
Pond #5:	Peak Elev=335.65' Inflow=0.20 cfs 0.015 af 12.0" Round Culvert n=0.012 L=192.0' S=0.0047 '/' Outflow=0.20 cfs 0.015 af
Pond #56:	Peak Elev=332.53' Inflow=0.14 cfs 0.009 af 12.0" Round Culvert n=0.012 L=248.0' S=0.0121 '/' Outflow=0.14 cfs 0.009 af
Pond #57:	Peak Elev=329.76' Inflow=0.66 cfs 0.037 af 12.0" Round Culvert n=0.012 L=157.0' S=0.0102 '/' Outflow=0.66 cfs 0.037 af
Pond #58:	Peak Elev=328.28' Inflow=1.39 cfs 0.077 af 18.0" Round Culvert n=0.012 L=214.0' S=0.0070 '/' Outflow=1.39 cfs 0.077 af
Pond #6:	Peak Elev=334.54' Inflow=0.35 cfs 0.028 af 15.0" Round Culvert n=0.012 L=34.0' S=0.0074 '/' Outflow=0.35 cfs 0.028 af
Pond #66:	Peak Elev=330.02' Inflow=5.55 cfs 0.293 af 24.0" Round Culvert n=0.012 L=136.0' S=0.0092 '/' Outflow=5.55 cfs 0.293 af
Pond #67:	Peak Elev=328.94' Inflow=5.88 cfs 0.310 af 24.0" Round Culvert n=0.012 L=45.0' S=0.0067 '/' Outflow=5.88 cfs 0.310 af
Pond #75:	Peak Elev=335.76' Inflow=0.40 cfs 0.020 af 12.0" Round Culvert n=0.012 L=124.0' S=0.0081 '/' Outflow=0.40 cfs 0.020 af
Pond #76:	Peak Elev=327.69' Inflow=0.47 cfs 0.023 af 12.0" Round Culvert n=0.012 L=128.0' S=0.0117 '/' Outflow=0.47 cfs 0.023 af
Pond #77:	Peak Elev=326.25' Inflow=1.34 cfs 0.065 af 15.0" Round Culvert n=0.012 L=106.0' S=0.0042 '/' Outflow=1.34 cfs 0.065 af
Pond #79:	Peak Elev=325.97' Inflow=2.03 cfs 0.099 af 15.0" Round Culvert n=0.012 L=119.0' S=0.0042 '/' Outflow=2.03 cfs 0.099 af

Type II 24-hr 1-YEAR Rainfall=2.22" Printed 3/26/2025

Ingale of ible Teleo En officer				
Pond #82:	15.0" Round Culve		v=330.35' Inflow=1.25 cfs .0050 '/' Outflow=1.25 cfs	
Pond #83:	12.0" Round Culv		v=330.81' Inflow=0.51 cfs .0049 '/' Outflow=0.51 cfs	
Pond #87:	15.0" Round Culve		v=329.93' Inflow=2.01 cfs .0052 '/' Outflow=2.01 cfs	
Pond #88:	18.0" Round Culve		v=329.28' Inflow=3.38 cfs .0052 '/' Outflow=3.38 cfs	
Pond #90:	24.0" Round Culv		v=327.72' Inflow=6.54 cfs .0068 '/' Outflow=6.54 cfs	
Pond #94:	30.0" Round Culve		=325.79' Inflow=13.60 cfs 0057 '/' Outflow=13.60 cfs	
Pond #95:	15.0" Round Culve		v=325.53' Inflow=2.73 cfs .0067 '/' Outflow=2.73 cfs	
Pond #98:	24.0" Round Culve		v=327.30' Inflow=8.34 cfs .0076 '/' Outflow=8.34 cfs	
Pond GD1: Grassed Depres	sion	Peak Elev=337.00' Sto	rage=0 cf Inflow=0.00 cfs Outflow=0.00 cfs	
Pond GD2: Grassed Depres	sion	Peak Elev=329.00' Sto	rage=0 cf Inflow=0.00 cfs Outflow=0.00 cfs	
Pond GD3: Grassed Depres	sion	Peak Elev=331.00' Sto	rage=0 cf Inflow=0.00 cfs Outflow=0.00 cfs	
Pond IB1: Infiltration Basin			rage=5 cf Inflow=0.02 cfs 0.000 af Outflow=0.02 cfs	
Pond IB2: Infiltration Basin			ge=160 cf Inflow=0.53 cfs 0.000 af Outflow=0.51 cfs	
Pond IB3: Infiltration Basin			e=2,540 cf Inflow=8.20 cfs 0.000 af Outflow=2.67 cfs	
Pond SF1: Sediment Foreba	ay 1	Peak Elev=334.26' Stora	ge=899 cf Inflow=0.35 cfs Outflow=0.02 cfs	
Pond SF2: Sediment Foreba	ay 2 P	eak Elev=327.58' Storage	=5,680 cf Inflow=5.88 cfs Outflow=0.53 cfs	
Pond SF3: Sediment Foreba	ay 3 Pea	k Elev=324.22' Storage=1	0,113 cf Inflow=13.60 cfs Outflow=8.20 cfs	

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Type II 24-hr 1-YEAR Rainfall=2.22" Printed 3/26/2025

Link DP1: Offsite Flows

Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Link DP2: Offsite Flows

Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Type II 24-hr 10-YEAR Rainfall=3.70" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Subcatchment 100:	Runoff Area=74,329 sf 16.96% Impervious Runoff Depth=0.22" Flow Length=210' Tc=15.6 min CN=49 Runoff=0.11 cfs 0.031 af
Subcatchment 101:	Runoff Area=54,281 sf 57.36% Impervious Runoff Depth=1.32" Tc=6.0 min CN=73 Runoff=2.84 cfs 0.137 af
Subcatchment 102:	Runoff Area=36,233 sf 59.73% Impervious Runoff Depth=1.38" Tc=6.0 min CN=74 Runoff=1.99 cfs 0.096 af
Subcatchment 103:	Runoff Area=11,117 sf 62.22% Impervious Runoff Depth=1.51" Tc=6.0 min CN=76 Runoff=0.67 cfs 0.032 af
Subcatchment 104:	Runoff Area=19,650 sf 62.14% Impervious Runoff Depth=1.51" Tc=6.0 min CN=76 Runoff=1.19 cfs 0.057 af
Subcatchment 105:	Runoff Area=51,062 sf 51.48% Impervious Runoff Depth=1.08" Tc=6.0 min CN=69 Runoff=2.15 cfs 0.105 af
Subcatchment 106:	Runoff Area=13,502 sf 56.45% Impervious Runoff Depth=1.25" Tc=6.0 min CN=72 Runoff=0.67 cfs 0.032 af
Subcatchment 107:	Runoff Area=22,060 sf 52.65% Impervious Runoff Depth=1.13" Tc=6.0 min CN=70 Runoff=0.98 cfs 0.048 af
Subcatchment 108:	Runoff Area=56,180 sf 59.77% Impervious Runoff Depth=1.38" Tc=6.0 min CN=74 Runoff=3.09 cfs 0.148 af
Subcatchment 109:	Runoff Area=20,376 sf 56.51% Impervious Runoff Depth=1.25" Tc=6.0 min CN=72 Runoff=1.01 cfs 0.049 af
Subcatchment 110:	Runoff Area=21,717 sf 58.53% Impervious Runoff Depth=1.38" Tc=6.0 min CN=74 Runoff=1.20 cfs 0.057 af
Subcatchment 111:	Runoff Area=26,818 sf 62.64% Impervious Runoff Depth=1.51" Tc=6.0 min CN=76 Runoff=1.62 cfs 0.078 af
Subcatchment 112:	Runoff Area=20,564 sf 64.02% Impervious Runoff Depth=1.58" Tc=6.0 min CN=77 Runoff=1.30 cfs 0.062 af
Subcatchment 113:	Runoff Area=14,080 sf 66.62% Impervious Runoff Depth=1.65" Tc=6.0 min CN=78 Runoff=0.92 cfs 0.044 af
Subcatchment 114:	Runoff Area=130,655 sf 10.65% Impervious Runoff Depth=0.12" Flow Length=825' Tc=22.0 min CN=45 Runoff=0.04 cfs 0.029 af
Subcatchment 115:	Runoff Area=142,084 sf 6.01% Impervious Runoff Depth=0.04" Flow Length=885' Tc=28.1 min CN=41 Runoff=0.02 cfs 0.012 af

Type II 24-hr 10-YEAR Rainfall=3.70" Printed 3/26/2025

Subcatchment 116:	Runoff Area=98,654 sf 6.63% Impervious Runoff Depth=0.04" Flow Length=600' Tc=21.9 min CN=41 Runoff=0.01 cfs 0.008 af
Subcatchment 117:	Runoff Area=13,263 sf 78.56% Impervious Runoff Depth=2.19" Tc=6.0 min CN=85 Runoff=1.14 cfs 0.056 af
Subcatchment 118:	Runoff Area=17,532 sf 81.82% Impervious Runoff Depth=2.36" Tc=6.0 min CN=87 Runoff=1.60 cfs 0.079 af
Subcatchment 119:	Runoff Area=17,804 sf 81.03% Impervious Runoff Depth=2.36" Tc=6.0 min CN=87 Runoff=1.63 cfs 0.080 af
Subcatchment 120:	Runoff Area=27,151 sf 85.92% Impervious Runoff Depth=2.64" Tc=6.0 min CN=90 Runoff=2.71 cfs 0.137 af
Subcatchment 121:	Runoff Area=17,345 sf 69.56% Impervious Runoff Depth=1.80" Tc=6.0 min CN=80 Runoff=1.23 cfs 0.060 af
Subcatchment 122:	Runoff Area=38,222 sf 77.66% Impervious Runoff Depth=2.19" Tc=6.0 min CN=85 Runoff=3.27 cfs 0.160 af
Subcatchment 123:	Runoff Area=44,152 sf 64.82% Impervious Runoff Depth=1.58" Tc=6.0 min CN=77 Runoff=2.79 cfs 0.134 af
Subcatchment 124:	Runoff Area=10,890 sf 63.50% Impervious Runoff Depth=1.51" Tc=6.0 min CN=76 Runoff=0.66 cfs 0.032 af
Subcatchment 125:	Runoff Area=17,386 sf 48.85% Impervious Runoff Depth=1.02" Tc=6.0 min CN=68 Runoff=0.69 cfs 0.034 af
Subcatchment 126:	Runoff Area=37,997 sf 55.45% Impervious Runoff Depth=1.25" Tc=6.0 min CN=72 Runoff=1.89 cfs 0.091 af
Subcatchment 127:	Runoff Area=53,483 sf 56.34% Impervious Runoff Depth=1.25" Tc=6.0 min CN=72 Runoff=2.66 cfs 0.128 af
Subcatchment 128:	Runoff Area=11,458 sf 65.54% Impervious Runoff Depth=1.65" Tc=6.0 min CN=78 Runoff=0.75 cfs 0.036 af
Subcatchment 129:	Runoff Area=13,905 sf 74.47% Impervious Runoff Depth=2.03" Tc=6.0 min CN=83 Runoff=1.11 cfs 0.054 af
Subcatchment 130:	Runoff Area=41,588 sf 71.22% Impervious Runoff Depth=1.87" Tc=6.0 min CN=81 Runoff=3.08 cfs 0.149 af
Subcatchment 131:	Runoff Area=25,360 sf 86.45% Impervious Runoff Depth=2.64" Tc=6.0 min CN=90 Runoff=2.54 cfs 0.128 af
Subcatchment 132:	Runoff Area=18,424 sf 84.33% Impervious Runoff Depth=2.54" Tc=6.0 min CN=89 Runoff=1.79 cfs 0.090 af

Type II 24-hr 10-YEAR Rainfall=3.70" Printed 3/26/2025

Subcatchment 133:	Runoff Area=14,378 sf 84.75% Impervious Runoff Depth=2.54" Tc=6.0 min CN=89 Runoff=1.40 cfs 0.070 af
Subcatchment 134:	Runoff Area=14,757 sf 84.85% Impervious Runoff Depth=2.54" Tc=6.0 min CN=89 Runoff=1.43 cfs 0.072 af
Subcatchment 135:	Runoff Area=41,379 sf 4.83% Impervious Runoff Depth=0.06" Tc=6.0 min CN=42 Runoff=0.01 cfs 0.005 af
Subcatchment 136:	Runoff Area=65,874 sf 15.80% Impervious Runoff Depth=0.19" Tc=6.0 min CN=48 Runoff=0.10 cfs 0.024 af
Subcatchment 137:	Runoff Area=15,856 sf 53.32% Impervious Runoff Depth=1.13" Tc=6.0 min CN=70 Runoff=0.71 cfs 0.034 af
Subcatchment 200:	Runoff Area=35,008 sf 44.99% Impervious Runoff Depth=0.91" Tc=6.0 min CN=66 Runoff=1.22 cfs 0.061 af
Subcatchment 201:	Runoff Area=33,949 sf 43.53% Impervious Runoff Depth=0.86" Tc=6.0 min CN=65 Runoff=1.10 cfs 0.056 af
Subcatchment 202:	Runoff Area=93,345 sf 3.80% Impervious Runoff Depth=0.04" Flow Length=313' Tc=19.4 min CN=41 Runoff=0.01 cfs 0.008 af
Pond #106:	Peak Elev=328.93' Inflow=0.71 cfs 0.034 af 12.0" Round Culvert n=0.012 L=85.0' S=0.0176 '/' Outflow=0.71 cfs 0.034 af
Pond #14:	Peak Elev=335.10' Inflow=2.84 cfs 0.137 af 15.0" Round Culvert n=0.012 L=227.0' S=0.0048 '/' Outflow=2.84 cfs 0.137 af
Pond #15:	Peak Elev=334.49' Inflow=4.84 cfs 0.232 af 15.0" Round Culvert n=0.012 L=55.0' S=0.0055 '/' Outflow=4.84 cfs 0.232 af
Pond #16:	Peak Elev=333.81' Inflow=5.51 cfs 0.264 af 18.0" Round Culvert n=0.012 L=100.0' S=0.0055 '/' Outflow=5.51 cfs 0.264 af
Pond #18:	Peak Elev=332.95' Inflow=10.50 cfs 0.507 af 24.0" Round Culvert n=0.012 L=139.0' S=0.0090 '/' Outflow=10.50 cfs 0.507 af
Pond #20:	Peak Elev=332.54' Inflow=17.43 cfs 0.839 af 24.0" Round Culvert n=0.012 L=218.0' S=0.0055 '/' Outflow=17.43 cfs 0.839 af
Pond #28:	Peak Elev=335.28' Inflow=3.34 cfs 0.162 af 15.0" Round Culvert n=0.012 L=147.0' S=0.0048 '/' Outflow=3.34 cfs 0.162 af
Pond #29:	Peak Elev=334.51' Inflow=4.01 cfs 0.194 af 18.0" Round Culvert n=0.012 L=222.0' S=0.0059 '/' Outflow=4.01 cfs 0.194 af
Pond #32:	Peak Elev=334.81' Inflow=3.09 cfs 0.148 af 15.0" Round Culvert n=0.012 L=163.0' S=0.0049 '/' Outflow=3.09 cfs 0.148 af

Type II 24-hr 10-YEAR Rainfall=3.70" Printed 3/26/2025

11yu10CAD@ 10.20-211 S/110	5470 © 2024 Hydrocad Software Solutions LEC
Pond #33:	Peak Elev=334.20' Inflow=4.11 cfs 0.197 af 15.0" Round Culvert n=0.012 L=297.0' S=0.0051 '/' Outflow=4.11 cfs 0.197 af
Pond #34:	Peak Elev=332.58' Inflow=5.30 cfs 0.254 af 18.0" Round Culvert n=0.012 L=128.0' S=0.0043 '/' Outflow=5.30 cfs 0.254 af
Pond #38:	Peak Elev=332.88' Inflow=1.23 cfs 0.060 af 12.0" Round Culvert n=0.012 L=285.0' S=0.0111 '/' Outflow=1.23 cfs 0.060 af
Pond #39:	Peak Elev=330.30' Inflow=7.26 cfs 0.353 af 18.0" Round Culvert n=0.012 L=393.0' S=0.0042 '/' Outflow=7.26 cfs 0.353 af
Pond #45:	Peak Elev=327.90' Inflow=3.08 cfs 0.149 af 12.0" Round Culvert n=0.012 L=195.0' S=0.0064 '/' Outflow=3.08 cfs 0.149 af
Pond #49:	Peak Elev=330.71' Inflow=3.27 cfs 0.160 af 12.0" Round Culvert n=0.012 L=22.0' S=0.0091 '/' Outflow=3.27 cfs 0.160 af
Pond #5:	Peak Elev=336.05' Inflow=1.22 cfs 0.061 af 12.0" Round Culvert n=0.012 L=192.0' S=0.0047 '/' Outflow=1.22 cfs 0.061 af
Pond #56:	Peak Elev=332.77' Inflow=0.69 cfs 0.034 af 12.0" Round Culvert n=0.012 L=248.0' S=0.0121 '/' Outflow=0.69 cfs 0.034 af
Pond #57:	Peak Elev=330.30' Inflow=2.58 cfs 0.125 af 12.0" Round Culvert n=0.012 L=157.0' S=0.0102 '/' Outflow=2.58 cfs 0.125 af
Pond #58:	Peak Elev=328.89' Inflow=5.24 cfs 0.253 af 18.0" Round Culvert n=0.012 L=214.0' S=0.0070 '/' Outflow=5.24 cfs 0.253 af
Pond #6:	Peak Elev=335.10' Inflow=2.33 cfs 0.117 af 15.0" Round Culvert n=0.012 L=34.0' S=0.0074 '/' Outflow=2.33 cfs 0.117 af
Pond #66:	Peak Elev=331.51' Inflow=18.73 cfs 0.901 af 24.0" Round Culvert n=0.012 L=136.0' S=0.0092 '/' Outflow=18.73 cfs 0.901 af
Pond #67:	Peak Elev=330.67' Inflow=19.66 cfs 0.945 af 24.0" Round Culvert n=0.012 L=45.0' S=0.0067 '/' Outflow=19.66 cfs 0.945 af
Pond #75:	Peak Elev=336.02' Inflow=1.19 cfs 0.057 af 12.0" Round Culvert n=0.012 L=124.0' S=0.0081 '/' Outflow=1.19 cfs 0.057 af
Pond #76:	Peak Elev=327.90' Inflow=1.11 cfs 0.054 af 12.0" Round Culvert n=0.012 L=128.0' S=0.0117 '/' Outflow=1.11 cfs 0.054 af
Pond #77:	Peak Elev=326.62' Inflow=2.90 cfs 0.144 af 15.0" Round Culvert n=0.012 L=106.0' S=0.0042 '/' Outflow=2.90 cfs 0.144 af
Pond #79:	Peak Elev=326.50' Inflow=4.30 cfs 0.214 af 15.0" Round Culvert n=0.012 L=119.0' S=0.0042 '/' Outflow=4.30 cfs 0.214 af

Type II 24-hr 10-YEAR Rainfall=3.70" Printed 3/26/2025

	1				
Pond #82:	15.0" Round Culver	Peak t n=0.012 L=120.0' \$	Elev=330.69' Inf S=0.0050 '/' Outf		
Pond #83:	12.0" Round Culve	Peak ert n=0.012 L=81.0' S	Elev=331.03' Inf S=0.0049 '/' Outf		
Pond #87:	15.0" Round Culver	Peak t n=0.012 L=105.0' \$	Elev=330.45' Inf S=0.0052 '/' Outf		
Pond #88:	18.0" Round Culver	Peak t n=0.012 L=251.0' \$	Elev=329.88' Inf S=0.0052 '/' Outf		
Pond #90:	24.0" Round Culver	Peak E t_n=0.012 L=73.0' S=	lev=328.61' Inflo =0.0068 '/' Outflo		
Pond #94:	30.0" Round Culver	Peak E t_n=0.012 L=35.0' S=	lev=327.52' Inflc =0.0057 '/' Outflc		
Pond #95:	15.0" Round Culver	Peak t n=0.012 L=104.0' S	Elev=326.26' Inf S=0.0067 '/' Outf		
Pond #98:	24.0" Round Culvert	Peak E n=0.012 L=270.0' S=	lev=329.06' Inflc =0.0076 '/' Outflc		
Pond GD1: Grassed Depres	ssion	Peak Elev=337.00'		low=0.11 cfs low=0.11 cfs	
Pond GD2: Grassed Depres	ssion	Peak Elev=329.00'		low=0.02 cfs low=0.02 cfs	
Pond GD3: Grassed Depres	ssion	Peak Elev=331.00'		low=0.01 cfs low=0.01 cfs	
Pond IB1: Infiltration Basin	1 Discarded=0.33 cfs 0.10	Peak Elev=333.43' Sto 04 af Primary=0.00 c			
Pond IB2: Infiltration Basin	2 Peak Discarded=1.76 cfs 0.84	Elev=327.40' Storage 49 af Primary=0.00 c			
Pond IB3: Infiltration Basin	3 Peak Discarded=3.31 cfs 1.4	Elev=323.59' Storage 66 af Primary=0.00 c			
Pond SF1: Sediment Foreb	ay 1 Pe	ak Elev=334.54' Stora		low=2.33 cfs low=1.93 cfs	
Pond SF2: Sediment Foreb	ay 2 Pea	k Elev=328.28' Stora	-	ow=19.66 cfs ow=18.58 cfs	
Pond SF3: Sediment Foreb	ay 3 Peak	Elev=324.85' Storage		ow=32.91 cfs ow=30.88 cfs	

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Type II 24-hr 10-YEAR Rainfall=3.70" Printed 3/26/2025

Link DP1: Offsite Flows

Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Link DP2: Offsite Flows

Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Subcatchment 100:	Runoff Area=74,329 sf 16.96% Impervious Runoff Depth=1.17" Flow Length=210' Tc=15.6 min CN=49 Runoff=2.05 cfs 0.166 af
Subcatchment 101:	Runoff Area=54,281 sf 57.36% Impervious Runoff Depth=3.26" Tc=6.0 min CN=73 Runoff=6.97 cfs 0.338 af
Subcatchment 102:	Runoff Area=36,233 sf 59.73% Impervious Runoff Depth=3.35" Tc=6.0 min CN=74 Runoff=4.78 cfs 0.232 af
Subcatchment 103:	Runoff Area=11,117 sf 62.22% Impervious Runoff Depth=3.55" Tc=6.0 min CN=76 Runoff=1.55 cfs 0.076 af
Subcatchment 104:	Runoff Area=19,650 sf 62.14% Impervious Runoff Depth=3.55" Tc=6.0 min CN=76 Runoff=2.74 cfs 0.134 af
Subcatchment 105:	Runoff Area=51,062 sf 51.48% Impervious Runoff Depth=2.87" Tc=6.0 min CN=69 Runoff=5.80 cfs 0.280 af
Subcatchment 106:	Runoff Area=13,502 sf 56.45% Impervious Runoff Depth=3.16" Tc=6.0 min CN=72 Runoff=1.68 cfs 0.082 af
Subcatchment 107:	Runoff Area=22,060 sf 52.65% Impervious Runoff Depth=2.96" Tc=6.0 min CN=70 Runoff=2.59 cfs 0.125 af
Subcatchment 108:	Runoff Area=56,180 sf 59.77% Impervious Runoff Depth=3.35" Tc=6.0 min CN=74 Runoff=7.42 cfs 0.360 af
Subcatchment 109:	Runoff Area=20,376 sf 56.51% Impervious Runoff Depth=3.16" Tc=6.0 min CN=72 Runoff=2.54 cfs 0.123 af
Subcatchment 110:	Runoff Area=21,717 sf 58.53% Impervious Runoff Depth=3.35" Tc=6.0 min CN=74 Runoff=2.87 cfs 0.139 af
Subcatchment 111:	Runoff Area=26,818 sf 62.64% Impervious Runoff Depth=3.55" Tc=6.0 min CN=76 Runoff=3.73 cfs 0.182 af
Subcatchment 112:	Runoff Area=20,564 sf 64.02% Impervious Runoff Depth=3.65" Tc=6.0 min CN=77 Runoff=2.94 cfs 0.144 af
Subcatchment 113:	Runoff Area=14,080 sf 66.62% Impervious Runoff Depth=3.76" Tc=6.0 min CN=78 Runoff=2.06 cfs 0.101 af
Subcatchment 114:	Runoff Area=130,655 sf 10.65% Impervious Runoff Depth=0.88" Flow Length=825' Tc=22.0 min CN=45 Runoff=1.84 cfs 0.221 af
Subcatchment 115:	Runoff Area=142,084 sf 6.01% Impervious Runoff Depth=0.62" Flow Length=885' Tc=28.1 min CN=41 Runoff=0.90 cfs 0.169 af

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Subcatchment 116:	Runoff Area=98,654 sf 6.63% Impervious Runoff Depth=0.62" Flow Length=600' Tc=21.9 min CN=41 Runoff=0.74 cfs 0.118 af
Subcatchment 117:	Runoff Area=13,263 sf 78.56% Impervious Runoff Depth=4.49" Tc=6.0 min CN=85 Runoff=2.25 cfs 0.114 af
Subcatchment 118:	Runoff Area=17,532 sf 81.82% Impervious Runoff Depth=4.71" Tc=6.0 min CN=87 Runoff=3.08 cfs 0.158 af
Subcatchment 119:	Runoff Area=17,804 sf 81.03% Impervious Runoff Depth=4.71" Tc=6.0 min CN=87 Runoff=3.13 cfs 0.160 af
Subcatchment 120:	Runoff Area=27,151 sf 85.92% Impervious Runoff Depth=5.04" Tc=6.0 min CN=90 Runoff=4.99 cfs 0.262 af
Subcatchment 121:	Runoff Area=17,345 sf 69.56% Impervious Runoff Depth=3.96" Tc=6.0 min CN=80 Runoff=2.66 cfs 0.131 af
Subcatchment 122:	Runoff Area=38,222 sf 77.66% Impervious Runoff Depth=4.49" Tc=6.0 min CN=85 Runoff=6.49 cfs 0.328 af
Subcatchment 123:	Runoff Area=44,152 sf 64.82% Impervious Runoff Depth=3.65" Tc=6.0 min CN=77 Runoff=6.31 cfs 0.309 af
Subcatchment 124:	Runoff Area=10,890 sf 63.50% Impervious Runoff Depth=3.55" Tc=6.0 min CN=76 Runoff=1.52 cfs 0.074 af
Subcatchment 125:	Runoff Area=17,386 sf 48.85% Impervious Runoff Depth=2.78" Tc=6.0 min CN=68 Runoff=1.91 cfs 0.092 af
Subcatchment 126:	Runoff Area=37,997 sf 55.45% Impervious Runoff Depth=3.16" Tc=6.0 min CN=72 Runoff=4.74 cfs 0.230 af
Subcatchment 127:	Runoff Area=53,483 sf 56.34% Impervious Runoff Depth=3.16" Tc=6.0 min CN=72 Runoff=6.67 cfs 0.323 af
Subcatchment 128:	Runoff Area=11,458 sf 65.54% Impervious Runoff Depth=3.76" Tc=6.0 min CN=78 Runoff=1.68 cfs 0.082 af
Subcatchment 129:	Runoff Area=13,905 sf 74.47% Impervious Runoff Depth=4.28" Tc=6.0 min CN=83 Runoff=2.27 cfs 0.114 af
Subcatchment 130:	Runoff Area=41,588 sf 71.22% Impervious Runoff Depth=4.07" Tc=6.0 min CN=81 Runoff=6.52 cfs 0.324 af
Subcatchment 131:	Runoff Area=25,360 sf 86.45% Impervious Runoff Depth=5.04" Tc=6.0 min CN=90 Runoff=4.66 cfs 0.245 af
Subcatchment 132:	Runoff Area=18,424 sf 84.33% Impervious Runoff Depth=4.93" Tc=6.0 min CN=89 Runoff=3.34 cfs 0.174 af

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Subcatchment 133:	Runoff Area=14,378 sf 84.75% Impervious Runoff Depth=4.93" Tc=6.0 min CN=89 Runoff=2.60 cfs 0.136 af
Subcatchment 134:	Runoff Area=14,757 sf 84.85% Impervious Runoff Depth=4.93" Tc=6.0 min CN=89 Runoff=2.67 cfs 0.139 af
Subcatchment 135:	Runoff Area=41,379 sf 4.83% Impervious Runoff Depth=0.69" Tc=6.0 min CN=42 Runoff=0.78 cfs 0.054 af
Subcatchment 136:	Runoff Area=65,874 sf 15.80% Impervious Runoff Depth=1.09" Tc=6.0 min CN=48 Runoff=2.54 cfs 0.138 af
Subcatchment 137:	Runoff Area=15,856 sf 53.32% Impervious Runoff Depth=2.96" Tc=6.0 min CN=70 Runoff=1.86 cfs 0.090 af
Subcatchment 200:	Runoff Area=35,008 sf 44.99% Impervious Runoff Depth=2.59" Tc=6.0 min CN=66 Runoff=3.63 cfs 0.173 af
Subcatchment 201:	Runoff Area=33,949 sf 43.53% Impervious Runoff Depth=2.50" Tc=6.0 min CN=65 Runoff=3.39 cfs 0.162 af
Subcatchment 202:	Runoff Area=93,345 sf 3.80% Impervious Runoff Depth=0.62" Flow Length=313' Tc=19.4 min CN=41 Runoff=0.76 cfs 0.111 af
Pond #106:	Peak Elev=329.25' Inflow=1.86 cfs 0.090 af 12.0" Round Culvert n=0.012 L=85.0' S=0.0176 '/' Outflow=1.86 cfs 0.090 af
Pond #14:	Peak Elev=337.31' Inflow=6.97 cfs 0.338 af 15.0" Round Culvert n=0.012 L=227.0' S=0.0048 '/' Outflow=6.97 cfs 0.338 af
Pond #15:	Peak Elev=337.66' Inflow=11.75 cfs 0.571 af 15.0" Round Culvert n=0.012 L=55.0' S=0.0055 '/' Outflow=11.75 cfs 0.571 af
Pond #16:	Peak Elev=336.12' Inflow=13.30 cfs 0.646 af 18.0" Round Culvert n=0.012 L=100.0' S=0.0055 '/' Outflow=13.30 cfs 0.646 af
Pond #18:	Peak Elev=335.40' Inflow=26.11 cfs 1.267 af 24.0" Round Culvert n=0.012 L=139.0' S=0.0090 '/' Outflow=26.11 cfs 1.267 af
Pond #20:	Peak Elev=341.84' Inflow=42.66 cfs 2.072 af 24.0" Round Culvert n=0.012 L=218.0' S=0.0055 '/' Outflow=42.66 cfs 2.072 af
Pond #28:	Peak Elev=338.04' Inflow=8.54 cfs 0.414 af 15.0" Round Culvert n=0.012 L=147.0' S=0.0048 '/' Outflow=8.54 cfs 0.414 af
Pond #29:	Peak Elev=336.25' Inflow=10.22 cfs 0.495 af 18.0" Round Culvert n=0.012 L=222.0' S=0.0059 '/' Outflow=10.22 cfs 0.495 af
Pond #32:	Peak Elev=336.92' Inflow=7.42 cfs 0.360 af 15.0" Round Culvert n=0.012 L=163.0' S=0.0049 '/' Outflow=7.42 cfs 0.360 af

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Pond #33:	Peak Elev=340.26' Inflow=9.96 cfs 0.484 af 15.0" Round Culvert n=0.012 L=297.0' S=0.0051 '/' Outflow=9.96 cfs 0.484 af
Pond #34:	Peak Elev=335.04' Inflow=12.82 cfs 0.623 af 18.0" Round Culvert n=0.012 L=128.0' S=0.0043 '/' Outflow=12.82 cfs 0.623 af
Pond #38:	Peak Elev=333.28' Inflow=2.66 cfs 0.131 af 12.0" Round Culvert n=0.012 L=285.0' S=0.0111 '/' Outflow=2.66 cfs 0.131 af
Pond #39:	Peak Elev=337.50' Inflow=15.45 cfs 0.769 af 18.0" Round Culvert n=0.012 L=393.0' S=0.0042 '/' Outflow=15.45 cfs 0.769 af
Pond #45:	Peak Elev=333.64' Inflow=6.52 cfs 0.324 af 12.0" Round Culvert n=0.012 L=195.0' S=0.0064 '/' Outflow=6.52 cfs 0.324 af
Pond #49:	Peak Elev=332.78' Inflow=6.49 cfs 0.328 af 12.0" Round Culvert n=0.012 L=22.0' S=0.0091 '/' Outflow=6.49 cfs 0.328 af
Pond #5:	Peak Elev=337.66' Inflow=3.63 cfs 0.173 af 12.0" Round Culvert n=0.012 L=192.0' S=0.0047 '/' Outflow=3.63 cfs 0.173 af
Pond #56:	Peak Elev=333.11' Inflow=1.91 cfs 0.092 af 12.0" Round Culvert n=0.012 L=248.0' S=0.0121 '/' Outflow=1.91 cfs 0.092 af
Pond #57:	Peak Elev=335.04' Inflow=6.65 cfs 0.322 af 12.0" Round Culvert n=0.012 L=157.0' S=0.0102 '/' Outflow=6.65 cfs 0.322 af
Pond #58:	Peak Elev=331.98' Inflow=13.32 cfs 0.645 af 18.0" Round Culvert n=0.012 L=214.0' S=0.0070 '/' Outflow=13.32 cfs 0.645 af
Pond #6:	Peak Elev=336.35' Inflow=7.02 cfs 0.336 af 15.0" Round Culvert n=0.012 L=34.0' S=0.0074 '/' Outflow=7.02 cfs 0.336 af
Pond #66:	Peak Elev=339.31' Inflow=45.60 cfs 2.216 af 24.0" Round Culvert n=0.012 L=136.0' S=0.0092 '/' Outflow=45.60 cfs 2.216 af
Pond #67:	Peak Elev=338.60' Inflow=47.66 cfs 2.317 af 24.0" Round Culvert n=0.012 L=45.0' S=0.0067 '/' Outflow=47.66 cfs 2.317 af
Pond #75:	Peak Elev=336.47' Inflow=2.74 cfs 0.134 af 12.0" Round Culvert n=0.012 L=124.0' S=0.0081 '/' Outflow=2.74 cfs 0.134 af
Pond #76:	Peak Elev=328.21' Inflow=2.27 cfs 0.114 af 12.0" Round Culvert n=0.012 L=128.0' S=0.0117 '/' Outflow=2.27 cfs 0.114 af
Pond #77:	Peak Elev=327.58' Inflow=5.61 cfs 0.288 af 15.0" Round Culvert n=0.012 L=106.0' S=0.0042 '/' Outflow=5.61 cfs 0.288 af
Pond #79:	Peak Elev=328.58' Inflow=8.21 cfs 0.423 af 15.0" Round Culvert n=0.012 L=119.0' S=0.0042 '/' Outflow=8.21 cfs 0.423 af

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Pond #82:	======================================	331.52' Inflow=5.33 cfs 0.272 af 050 '/' Outflow=5.33 cfs 0.272 af
Pond #83:	======================================	331.39' Inflow=2.25 cfs 0.114 af 049 '/' Outflow=2.25 cfs 0.114 af
Pond #87:	======================================	332.48' Inflow=8.46 cfs 0.432 af 052 '/' Outflow=8.46 cfs 0.432 af
Pond #88:	Peak Elev=3 18.0" Round Culvert n=0.012 L=251.0' S=0.00	33.39' Inflow=13.45 cfs 0.694 af 52 '/' Outflow=13.45 cfs 0.694 af
Pond #90:	Peak Elev=3 24.0" Round Culvert n=0.012 L=73.0' S=0.00	31.51' Inflow=30.41 cfs 1.537 af 68 '/' Outflow=30.41 cfs 1.537 af
Pond #94:	Peak Elev=3 30.0" Round Culvert n=0.012 L=35.0' S=0.00	33.75' Inflow=69.29 cfs 3.484 af 57 '/' Outflow=69.29 cfs 3.484 af
Pond #95:	Peak Elev=3 15.0" Round Culvert n=0.012 L=104.0' S=0.00	29.54' Inflow=10.89 cfs 0.562 af 67 '/' Outflow=10.89 cfs 0.562 af
Pond #98:	Peak Elev=3 24.0" Round Culvert n=0.012 L=270.0' S=0.00	41.19' Inflow=47.24 cfs 2.354 af 76 '/' Outflow=47.24 cfs 2.354 af
Pond GD1: Grassed Depre	Peak Elev=337.50' Storage=1	1,373 cf Inflow=2.05 cfs 0.166 af Outflow=0.57 cfs 0.166 af
Pond GD2: Grassed Depre	Sion Peak Elev=329.09' Storage	=278 cf Inflow=0.90 cfs 0.169 af Outflow=0.68 cfs 0.169 af
Pond GD3: Grassed Depre	Peak Elev=331.18' Storage	=361 cf Inflow=0.74 cfs 0.118 af Outflow=0.40 cfs 0.118 af
Pond IB1: Infiltration Basir	1 Peak Elev=335.95' Storage=6 iscarded=0.63 cfs 0.426 af Primary=0.00 cfs 0.0	5,844 cf Inflow=7.02 cfs 0.426 af 000 af Outflow=0.63 cfs 0.426 af
Pond IB2: Infiltration Basir	2 Peak Elev=330.91' Storage=50, iscarded=2.59 cfs 2.412 af Primary=0.00 cfs 0.0	835 cf Inflow=46.83 cfs 2.412 af 000 af Outflow=2.59 cfs 2.412 af
Pond IB3: Infiltration Basir	3 Peak Elev=325.90' Storage=70, iscarded=4.42 cfs 3.491 af Primary=0.00 cfs 0.0	693 cf Inflow=69.22 cfs 3.491 af 000 af Outflow=4.42 cfs 3.491 af
Pond SF1: Sediment Foreb	ay 1 Peak Elev=334.89' Storage=1	1,417 cf Inflow=7.02 cfs 0.336 af Outflow=6.89 cfs 0.315 af
Pond SF2: Sediment Foreb	ay 2 Peak Elev=328.95' Storage=10,	337 cf Inflow=47.66 cfs 2.317 af Outflow=46.42 cfs 2.192 af
Pond SF3: Sediment Foreb	ay 3 Peak Elev=325.60' Storage=17,	229 cf Inflow=69.91 cfs 3.538 af Outflow=66.68 cfs 3.353 af

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Link DP1: Offsite Flows

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Link DP2: Offsite Flows

Inflow=0.00 cfs 0.000 af Primary=0.00 cfs 0.000 af

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Subcatchment 100:

Runoff = 2.05 cfs @ 12.11 hrs, Volume= 0.166 af, Depth= 1.17" Routed to Pond GD1 : Grassed Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

_	A	rea (sf)	CN	N Description			
		12,604	98	Paved parking, HSG A			
		0	30	Woods, Go	od, HSG A		
		0	39	Pasture/gra	assland/ran	ge, Good, HSG A	
_		61,725	39	>75% Gras	s cover, Go	bod, HSG A	
		74,329	49	Weighted A	Verage		
		61,725		83.04% Pe	rvious Area	l	
		12,604		16.96% Impervious Area			
	Tc	Length	Slop		Capacity	Description	
_	(min)	(feet)	(ft/ft	:) (ft/sec)	(cfs)		
	14.5	100	0.025	0.11		Sheet Flow, A	
						Grass: Dense n= 0.240 P2= 2.58"	
	1.1	110	0.010	0 1.61		Shallow Concentrated Flow, B	
_						Unpaved Kv= 16.1 fps	
	15.6	210	Total				

15.6 210 Total

Summary for Subcatchment 101:

Runoff = 6.97 cfs @ 11.97 hrs, Volume= Routed to Pond #14 : 0.338 af, Depth= 3.26"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

A	rea (sf)	CN	Description				
	31,134	98	Paved park	ing, HSG A	N		
	0	30	Woods, Go	od, HSG A			
	0	39	Pasture/gra	ssland/rang	ge, Good, HSG A		
	23,147	39	>75% Gras	s cover, Go	ood, HSG A		
	54,281	73	Weighted Average				
	23,147		42.64% Pervious Area				
	31,134		57.36% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
6.0					Direct Entry,		

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Subcatchment 102:

Runoff = 4.78 cfs @ 11.97 hrs, Volume= 0.232 af, Depth= 3.35" Routed to Pond #15 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

A	rea (sf)	CN	Description			
	21,641	98	Paved park	ing, HSG A	N Contraction of the second seco	
	0	30	Woods, Good, HSG A			
	0	39	Pasture/grassland/range, Good, HSG A			
	14,592	39	>75% Gras	s cover, Go	ood, HSG A	
	36,233	74	Weighted A	verage		
	14,592		40.27% Per	vious Area		
	21,641		59.73% Imp	pervious Are	ea	
Tc	Length	Slop	,	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
6.0					Direct Entry,	

Summary for Subcatchment 103:

Runoff = 1.55 cfs @ 11.97 hrs, Volume= 0.076 af, Depth= 3.55" Routed to Pond #16 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

Area (sf)	CN	Description			
6,917	98	Paved parking, HSG A			
0	30	Woods, Good, HSG A			
0	39	Pasture/grassland/range, Good, HSG A			
4,200	39	>75% Grass cover, Good, HSG A			
11,117	76	Weighted Average			
4,200		37.78% Pervious Area			
6,917		62.22% Impervious Area			
Tc Length					
(min) (feet) (ft/	/ft) (ft/sec) (cfs)			
6.0					

6.0

Direct Entry,

Summary for Subcatchment 104:

Runoff = 2.74 cfs @ 11.97 hrs, Volume= 0.134 af, Depth= 3.55" Routed to Pond #75 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Ar	ea (sf)	CN	Description		
	12,210	98	Paved park	ing, HSG A	N
	0	30			
	0	39	Pasture/gra	ssland/rang	ge, Good, HSG A
	7,440	39	>75% Gras	s cover, Go	bod, HSG A
	19,650	76	Weighted A	verage	
	7,440		37.86% Per	vious Area	
	12,210		62.14% Imp	ervious Ar	ea
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment 105:

Runoff = 5.80 cfs @ 11.97 hrs, Volume= 0.280 af, Depth= 2.87" Routed to Pond #28 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

Are	ea (sf)	CN	Description			
2	26,285	98	Paved park	ing, HSG A	N	
	0	30	Woods, Good, HSG A			
	0	39	Pasture/gra	ssland/rang	ge, Good, HSG A	
2	24,777	39	>75% Gras	s cover, Go	ood, HSG A	
5	51,062	69	Weighted A	verage		
2	24,777		48.52% Per	vious Area		
2	26,285		51.48% Imp	ervious Are	ea	
Тс	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
6.0					Direct Entry,	

Summary for Subcatchment 106:

Runoff = 1.68 cfs @ 11.97 hrs, Volume= 0.082 af, Depth= 3.16" Routed to Pond #29 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

Area (sf)	CN	Description
7,622	98	Paved parking, HSG A
0	30	Woods, Good, HSG A
0	39	Pasture/grassland/range, Good, HSG A
5,880	39	>75% Grass cover, Good, HSG A
13,502	72	Weighted Average
5,880		43.55% Pervious Area
7,622		56.45% Impervious Area

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry,
Summary for Subcatchment 107:
Runoff = 2.59 cfs @ 11.97 hrs, Volume= 0.125 af, Depth= 2.96" Routed to Pond #18 :
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"
Area (sf) CN Description
11,615 98 Paved parking, HSG A
0 30 Woods, Good, HSG A 0 39 Pasture/grassland/range, Good, HSG A
10,445 39 >75% Grass cover, Good, HSG A
22,060 70 Weighted Average
10,445 47.35% Pervious Area 11,615 52.65% Impervious Area
11,015 SZ.05 /0 Impervious Area
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 (ft/ft) (ft/sec) (cfs) Direct Entry ,
6.0 Direct Entry,
6.0 Direct Entry, Summary for Subcatchment 108: Runoff = 7.42 cfs @ 11.97 hrs, Volume= 0.360 af, Depth= 3.35"
6.0 Direct Entry, Summary for Subcatchment 108: Runoff = 7.42 cfs @ 11.97 hrs, Volume= 0.360 af, Depth= 3.35" Routed to Pond #32 : Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs
6.0 Direct Entry, Summary for Subcatchment 108: Runoff = 7.42 cfs @ 11.97 hrs, Volume= 0.360 af, Depth= 3.35" Routed to Pond #32 : Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20" Area (sf) CN Description 33,581 98 Paved parking, HSG A
6.0 Direct Entry, Summary for Subcatchment 108: Runoff = 7.42 cfs @ 11.97 hrs, Volume= 0.360 af, Depth= 3.35" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20" Area (sf) CN Description 33,581 98 Paved parking, HSG A 0 30 Woods, Good, HSG A
6.0 Direct Entry, Summary for Subcatchment 108: Runoff = 7.42 cfs @ 11.97 hrs, Volume= 0.360 af, Depth= 3.35" Routed to Pond #32 : Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20" Area (sf) CN Description 33,581 Description
6.0 Direct Entry, Summary for Subcatchment 108: Runoff = 7.42 cfs @ 11.97 hrs, Volume= 0.360 af, Depth= 3.35" Routed to Pond #32 : Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20" Area (sf) CN Description 33,581 98 Paved parking, HSG A 0 30 Woods, Good, HSG A 0 39 Pasture/grassland/range, Good, HSG A 22,599 39 >75% Grass cover, Good, HSG A 56,180 74 Weighted Average
6.0 Direct Entry, Summary for Subcatchment 108: Runoff = 7.42 cfs @ 11.97 hrs, Volume= 0.360 af, Depth= 3.35" Routed to Pond #32 : Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20" Area (sf) CN Description 33,581 98 Paved parking, HSG A 0 30 Woods, Good, HSG A 0 39 Pasture/grassland/range, Good, HSG A 22,599 39 >75% Grass cover, Good, HSG A

TcLengthSlopeVelocityCapacityDescription(min)(feet)(ft/ft)(ft/sec)(cfs)

6.0

Direct Entry,

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Subcatchment 109:

Runoff = 2.54 cfs @ 11.97 hrs, Volume= 0.123 af, Depth= 3.16" Routed to Pond #33 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

Area (sf) CN	N Descripti	Description						
11,5	14 98	B Paved pa	arking, HSG A	N Contraction of the second seco					
	0 30) Woods,	Good, HSG A						
	0 39	9 Pasture/	grassland/ran	ge, Good, HSG A					
8,8	62 39	9 >75% Gi	ass cover, Go	bod, HSG A					
20,3	76 72	2 Weighte	Weighted Average						
8,8	62	43.49%	43.49% Pervious Area						
11,5	14	56.51%	56.51% Impervious Area						
	•	lope Veloci		Description					
(min) (f	eet) ((ft/ft) (ft/se	c) (cfs)						
6.0				Direct Entry,					

Summary for Subcatchment 110:

Runoff = 2.87 cfs @ 11.97 hrs, Volume= 0.139 af, Depth= 3.35" Routed to Pond #34 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

	Area (sf)	CN	Description						
	12,710	98	Paved parki	ng, HSG A					
	0	30	Woods, Goo	od, HSG A					
	0	39	Pasture/gras	ssland/rang	ge, Good, HSG A				
	9,007	39	>75% Grass	>75% Grass cover, Good, HSG A					
	21,717	74	Weighted Average						
	9,007		41.47% Per	41.47% Pervious Area					
	12,710		58.53% Impervious Area						
	Tc Length	Slo	pe Velocity	Capacity	Description				
_	(min) (feet)	(ft/	ft) (ft/sec)	t) (ft/sec) (cfs)					
	~ ~								

6.0

Direct Entry,

Summary for Subcatchment 111:

Runoff = 3.73 cfs @ 11.97 hrs, Volume= 0.182 af, Depth= 3.55" Routed to Pond #20 :

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Area	(sf) CN	CN Description						
16,	800 98	Paved park	ing, HSG A	N				
	0 30	Woods, Go	od, HSG A					
	0 39	Pasture/gra	ssland/rang	ge, Good, HSG A				
10,	018 39	>75% Gras	s cover, Go	ood, HSG A				
26,	818 76	Weighted A	verage					
10,	D18	37.36% Pervious Area						
16,	800	62.64% Impervious Area						
To Lo	nath Cla		Conosity	Description				
	•	pe Velocity	Capacity	Description				
	feet) (ft	/ft) (ft/sec)	(cfs)					
6.0				Direct Entry,				

Summary for Subcatchment 112:

Runoff = 2.94 cfs @ 11.97 hrs, Volume= 0.144 af, Depth= 3.65" Routed to Pond #66 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

Are	ea (sf)	CN	Description						
1	3,166	98	Paved park	ing, HSG A	N				
	0	30	Woods, Go	od, HSG A					
	0	39	Pasture/gra	ssland/rang	ge, Good, HSG A				
	7,398	39	>75% Gras	s cover, Go	ood, HSG A				
2	20,564	77	Weighted Average						
	7,398		35.98% Pervious Area						
1	3,166	(64.02% Impervious Area						
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment 113:

Runoff = 2.06 cfs @ 11.97 hrs, Volume= 0.101 af, Depth= 3.76" Routed to Pond #67 :

Area (sf)	CN	Description
9,380	98	Paved parking, HSG A
0	30	Woods, Good, HSG A
0	39	Pasture/grassland/range, Good, HSG A
4,700	39	>75% Grass cover, Good, HSG A
14,080	78	Weighted Average
4,700		33.38% Pervious Area
9,380		66.62% Impervious Area

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry,				
	Summary for Subcatchment 114:								
Runoff Route	Runoff = 1.84 cfs @ 12.21 hrs, Volume= 0.221 af, Depth= 0.88" Routed to Pond IB2 : Infiltration Basin 2								
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"								
A	rea (sf)	CN D	escription						
	13,915			ing, HSG A					
	0			od, HSG A					
	0				ge, Good, HSG A				
-	16,740				bod, HSG A				
	30,655		/eighted A						
1	16,740	-		vious Area					
	13,915	1	0.65% Imp	pervious Ar	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
15.9	100	0.0200	0.10		Sheet Flow, A				
					Grass: Dense n= 0.240 P2= 2.58"				
6.1	725	0.0150	1.97		Shallow Concentrated Flow, B				
					Unpaved Kv= 16.1 fps				
22.0	825	Total							

Summary for Subcatchment 115:

Runoff = 0.90 cfs @ 12.33 hrs, Volume= 0.169 af, Depth= 0.62" Routed to Pond GD2 : Grassed Depression

Area (sf)	CN	Description
8,545	98	Paved parking, HSG A
30,257	30	Woods, Good, HSG A
0	39	Pasture/grassland/range, Good, HSG A
103,282	39	>75% Grass cover, Good, HSG A
142,084	41	Weighted Average
133,539		93.99% Pervious Area
8,545		6.01% Impervious Area

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	21.0	100	0.0100	0.08		Sheet Flow, A
						Grass: Dense n= 0.240 P2= 2.58"
	7.1	785	0.0130	1.84		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	28.1	885	Total			

Summary for Subcatchment 116:

Runoff = 0.74 cfs @ 12.23 hrs, Volume= 0.118 af, Depth= 0.62" Routed to Pond GD3 : Grassed Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

A	rea (sf)	CN E	CN Description					
	6,539	98 F	aved park	ing, HSG A				
	19,525	30 V	Voods, Go	od, HSG A				
	0	39 F	Pasture/gra	ssland/rang	ge, Good, HSG A			
	72,590	39 >	75% Gras	s cover, Go	ood, HSG A			
	98,654	41 V	Veighted A	verage				
	92,115	g	3.37% Per	vious Area				
	6,539	6	6.63% Impe	ervious Area	а			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
15.9	100	0.0200	0.10		Sheet Flow, A			
					Grass: Dense n= 0.240 P2= 2.58"			
6.0	500	0.0075	1.39		Shallow Concentrated Flow, B			
					Unpaved Kv= 16.1 fps			
21.9	600	Total						

Summary for Subcatchment 117:

Runoff = 2.25 cfs @ 11.97 hrs, Volume= 0.114 af, Depth= 4.49" Routed to Pond #83 :

Area (sf)	CN	Description
10,419	98	Paved parking, HSG A
0	30	Woods, Good, HSG A
0	39	Pasture/grassland/range, Good, HSG A
2,844	39	>75% Grass cover, Good, HSG A
13,263	85	Weighted Average
2,844		21.44% Pervious Area
10,419		78.56% Impervious Area

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)								
6.0 Direct Entry,								
Summary for Subcatchment 118:								
Runoff = 3.08 cfs @ 11.96 hrs, Volume= 0.158 af, Depth= 4.71" Routed to Pond #82 :								
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"								
Area (sf) CN Description								
14,345 98 Paved parking, HSG A								
0 30 Woods, Good, HSG A								
0 39 Pasture/grassland/range, Good, HSG A								
3,187 39 >75% Grass cover, Good, HSG A								
17,532 87 Weighted Average								
3,187 18.18% Pervious Area								
14,345 81.82% Impervious Area								
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)								
6.0 Direct Entry,								
Summary for Subcatchment 119:								

Runoff = 3.13 cfs @ 11.96 hrs, Volume= 0.160 af, Depth= 4.71" Routed to Pond #87 :

Area	a (sf)	CN	Description					
14	1,427	98	Paved park	ing, HSG A	A			
	0	30	Woods, Go	od, HSG A				
	0	39	Pasture/gra	ssland/rang	ge, Good, HSG A			
3	3,377	39	>75% Grass cover, Good, HSG A					
17	7,804	87	Weighted A	verage				
3	3,377		18.97% Pervious Area					
14	1,427		81.03% Impervious Area					
Tc L	ength	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)		(cfs)	•			
6.0					Direct Entry,			

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Subcatchment 120:

Runoff = 4.99 cfs @ 11.96 hrs, Volume= 0.262 af, Depth= 5.04" Routed to Pond #88 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

A	rea (sf)	CN	Description					
	23,329	98	Paved park	ing, HSG A	N			
	0	30	Woods, Go	od, HSG A				
	0	39	Pasture/gra	ssland/rang	ge, Good, HSG A			
	3,822	39	>75% Gras	s cover, Go	ood, HSG A			
	27,151	90	Weighted Average					
	3,822		14.08% Per	vious Area				
	23,329		85.92% Impervious Area					
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 121:

Runoff = 2.66 cfs @ 11.97 hrs, Volume= 0.131 af, Depth= 3.96" Routed to Pond #38 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

	Area (sf)	CN	Description						
	12,066	98	Paved parki	ng, HSG A					
	0	30	Woods, Goo	od, HSG A					
	0	39	Pasture/gras	ssland/rang	ge, Good, HSG A				
	5,279	39	>75% Grass cover, Good, HSG A						
	17,345	80	80 Weighted Average						
	5,279	30.44% Pervious Area							
	12,066 69.56% Impervious Area								
Tc	Length	Slop	e Velocity	Capacity	Description				
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)					
6.0					Direct Entry				

6.0

Direct Entry,

Summary for Subcatchment 122:

Runoff = 6.49 cfs @ 11.97 hrs, Volume= 0.328 af, Depth= 4.49" Routed to Pond #49 :

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description					
	29,682	98	Paved park	ing, HSG A				
	0	30	Woods, Go	od, HSG A				
	0	39	Pasture/gra	ssland/rang	ge, Good, HSG A			
	8,540	39	>75% Gras	s cover, Go	bod, HSG A			
	38,222	85	Weighted A	verage				
	8,540		22.34% Pervious Area					
	29,682		77.66% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment 123:

Runoff = 6.31 cfs @ 11.97 hrs, Volume= 0.309 af, Depth= 3.65" Routed to Pond #39 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

Ar	rea (sf)	CN	Description					
	28,619	98	Paved park	ing, HSG A				
	0	30	Woods, Go	od, HSG A				
	0	39	Pasture/gra	ssland/rang	ge, Good, HSG A			
	15,533	39	>75% Gras	s cover, Go	bod, HSG A			
	44,152	77	Weighted Average					
	15,533		35.18% Pervious Area					
	28,619		64.82% Impervious Area					
Тс	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 124:

Runoff = 1.52 cfs @ 11.97 hrs, Volume= 0.074 af, Depth= 3.55" Routed to Pond #90 :

Area (sf)	CN	Description					
6,915	98	Paved parking, HSG A					
0	30	Woods, Good, HSG A					
0	39	Pasture/grassland/range, Good, HSG A					
3,975	39	>75% Grass cover, Good, HSG A					
10,890	76	Weighted Average					
3,975		36.50% Pervious Area					
6,915		63.50% Impervious Area					

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry,							
Summary for Subcatchment 125:							
Runoff = 1.91 cfs @ 11.97 hrs, Volume= 0.092 af, Depth= 2.78" Routed to Pond #56 :							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"							
Area (sf) CN Description							
8,493 98 Paved parking, HSG A							
0 30 Woods, Good, HSG A 0 39 Pasture/grassland/range, Good, HSG A							
8,893 39 >75% Grass cover, Good, HSG A							
17,386 68 Weighted Average							
8,893 51.15% Pervious Area 8,493 48.85% Impervious Area							
0,495 40.05 % Impervious Area							
Tc Length Slope Velocity Capacity Description							
(min) (feet) (ft/ft) (ft/sec) (cfs)							
(min) (feet) (ft/ft) (ft/sec) (cfs)							
(min)(feet)(ft/sec)(cfs)6.0Direct Entry,							
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 126: Runoff = 4.74 cfs @ 11.97 hrs, Volume= 0.230 af, Depth= 3.16"							
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Summary for Subcatchment 126: Runoff = 4.74 cfs @ 11.97 hrs, Volume= 0.230 af, Depth= 3.16" Routed to Pond #57 : Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs							
(min)(feet)(ft/ft)(ft/sec)(cfs)6.0Direct Entry,Summary for Subcatchment 126:Runoff = 4.74 cfs @ 11.97 hrs, Volume= 0.230 af, Depth= 3.16"Routed to Pond #57 :Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrsType II 24-hr 100-YEAR Rainfall=6.20"Area (sf)CNDescription21,06998Paved parking, HSG A							
$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							
(min)(feet)(ft/ft)(ft/sec)(cfs)6.0Direct Entry,Summary for Subcatchment 126:Runoff = 4.74 cfs @ 11.97 hrs, Volume= 0.230 af, Depth= 3.16"Routed to Pond #57 :Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrsType II 24-hr 100-YEAR Rainfall=6.20"Area (sf)CNDescription21,06998Paved parking, HSG A							
(min)(feet)(ft/ft)(ft/sec)(cfs)6.0Direct Entry,Summary for Subcatchment 126:Runoff=4.74 cfs @11.97 hrs, Volume=0.230 af, Depth= 3.16"Routed to Pond #57 :Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrsType II 24-hr100-YEAR Rainfall=6.20"Area (sf)CNDescription21,06998Paved parking, HSG A030Woods, Good, HSG A039Pasture/grassland/range, Good, HSG A16,92839>75% Grass cover, Good, HSG A37,99772Weighted Average							
$\begin{array}{c cccc} (\min) & (\text{feet}) & (\text{ft/ft}) & (\text{ft/sec}) & (\text{cfs}) \\ \hline & & & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline$							

	•				Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry,

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Subcatchment 127:

Runoff = 6.67 cfs @ 11.97 hrs, Volume= 0.323 af, Depth= 3.16" Routed to Pond #58 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

A	rea (sf)	CN	Description					
	30,131	98	Paved park	ing, HSG A	\			
	0	30	Woods, Go	od, HSG A				
	0	39	Pasture/gra	ssland/rang	ge, Good, HSG A			
	23,352	39	>75% Gras	s cover, Go	ood, HSG A			
	53,483	72	Weighted A	verage				
	23,352		43.66% Pervious Area					
	30,131		56.34% Impervious Area					
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 128:

Runoff = 1.68 cfs @ 11.97 hrs, Volume= 0.082 af, Depth= 3.76" Routed to Pond #98 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

	Area (s	f) CN	Description	Description						
	7,51	0 98	B Paved pa	rking, HSG A	Ą					
		0 30	Woods, C	Good, HSG A	N N N N N N N N N N N N N N N N N N N					
		0 39	Pasture/g	rassland/ran	ige, Good, HSG A					
	3,94	18 39	>75% Gr	>75% Grass cover, Good, HSG A						
	11,45	58 78	78 Weighted Average							
	3,94	18	34.46% Pervious Area							
	7,51	0	65.54% Impervious Area							
	Tc Leng	gth Sl	ope Velocit	y Capacity	Description					
_	(min) (fe	et) (1	ft/ft) (ft/sec	cfs)						
	~ ~				Diverse Eastern					

6.0

Direct Entry,

Summary for Subcatchment 129:

Runoff = 2.27 cfs @ 11.97 hrs, Volume= 0.114 af, Depth= 4.28" Routed to Pond #76 :

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description					
	10,355	98	Paved park	ing, HSG A	Ą			
	0	30	Woods, Go	od, HSG A	A			
	0	39	Pasture/gra	ssland/ran	nge, Good, HSG A			
	3,550	39	>75% Gras	s cover, Go	ood, HSG A			
	13,905	83	Weighted A	verage				
	3,550		25.53% Pervious Area					
	10,355		74.47% Impervious Area					
-		01		0 1				
TC	Length	Slope		Capacity	•			
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 130:

Runoff = 6.52 cfs @ 11.97 hrs, Volume= 0.324 af, Depth= 4.07" Routed to Pond #45 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

A	rea (sf)	CN	Description					
	29,618	98	Paved park	ing, HSG A	N			
	0	30	Woods, Go	od, HSG A				
	0	39	Pasture/gra	ssland/rang	ge, Good, HSG A			
	11,970	39	>75% Gras	s cover, Go	bod, HSG A			
	41,588	81	Weighted Average					
	11,970		28.78% Pervious Area					
	29,618		71.22% Impervious Area					
Тс	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft	:) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment 131:

Runoff = 4.66 cfs @ 11.96 hrs, Volume= 0.245 af, Depth= 5.04" Routed to Pond #94 :

Area (sf)	CN	Description
21,923	98	Paved parking, HSG A
0	30	Woods, Good, HSG A
0	39	Pasture/grassland/range, Good, HSG A
3,437	39	>75% Grass cover, Good, HSG A
25,360	90	Weighted Average
3,437		13.55% Pervious Area
21,923		86.45% Impervious Area

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry,							
Summary for Subcatchment 132:							
Runoff = 3.34 cfs @ 11.96 hrs, Volume= 0.174 af, Depth= 4.93" Routed to Pond #77 :							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"							
Area (sf) CN Description							
15,537 98 Paved parking, HSG A							
0 30 Woods, Good, HSG A 0 39 Pasture/grassland/range, Good, HSG A							
2,887 39 >75% Grass cover, Good, HSG A							
18,424 89 Weighted Average							
2,887 15.67% Pervious Area							
15,537 84.33% Impervious Area							
Tc Length Slope Velocity Capacity Description							
(min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry,							
Summary for Subcatchment 133:							
Runoff = 2.60 cfs @ 11.96 hrs, Volume= 0.136 af, Depth= 4.93" Routed to Pond #79 :							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"							
Area (sf) CN Description							
12,185 98 Paved parking, HSG A							
0 30 Woods, Good, HSG A							
0 39 Pasture/grassland/range, Good, HSG A 2,193 39 >75% Grass cover, Good, HSG A							
2,193 39 >75% Grass cover, Good, HSG A 14,378 89 Weighted Average							
2,193 15.25% Pervious Area							

12,185 84.75% Impervious Area

Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	-
6.0					Direct Entry,

		- 6
		– L

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Subcatchment 134:

Runoff = 2.67 cfs @ 11.96 hrs, Volume= 0.139 af, Depth= 4.93" Routed to Pond #95 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

A	rea (sf)	CN	Description		
	12,522	98	Paved park	ing, HSG A	A
	0	30	Woods, Go	od, HSG A	
	0	39	Pasture/gra	ssland/rang	ge, Good, HSG A
	2,235	39	>75% Gras	s cover, Go	ood, HSG A
	14,757	89	Weighted A	verage	
	2,235		15.15% Pe	vious Area	1
	12,522		84.85% Imp	pervious Ar	ea
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.0					Direct Entry,
					-

Summary for Subcatchment 135:

Runoff	=	0.78 cfs @	12.01 hrs,	Volume=
Routed	to Pond	SF3 : Sedin	nent Foreba	y 3

0.054 af, Depth= 0.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

Area (sf)	CN	N Description				
2,000	98	Paved parking, HSG A				
0	30	Woods, Good, HSG A				
0	39	Pasture/grassland/range, Good, HSG A				
39,379	39	>75% Grass cover, Good, HSG A				
41,379	42	Weighted Average				
39,379		95.17% Pervious Area				
2,000		4.83% Impervious Area				
Tc Length	Sloj	pe Velocity Capacity Description				
(min) (feet)	(ft/	/ft) (ft/sec) (cfs)				

6.0

Direct Entry,

Summary for Subcatchment 136:

Runoff = 2.54 cfs @ 11.99 hrs, Volume= 0.138 af, Depth= 1.09" Routed to Pond IB3 : Infiltration Basin 3

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	10,410	98	Paved park	ing, HSG A	Α
	0	30	Woods, Go	od, HSG A	N Contraction of the second seco
	0	39	Pasture/gra	ssland/ran	nge, Good, HSG A
	55,464	39	>75% Gras	s cover, Go	ood, HSG A
	65,874	48 Weighted Average			
	55,464		a		
	10,410		15.80% Imp	pervious Ar	rea
Тс	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment 137:

Runoff = 1.86 cfs @ 11.97 hrs, Volume= 0.090 af, Depth= 2.96" Routed to Pond #106 :

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"

A	rea (sf)	CN	Description				
	8,454	98	Paved park	ing, HSG A	N		
	0	30	Woods, Go	od, HSG A			
	0	39	Pasture/gra	ssland/ran	ge, Good, HSG A		
	7,402	39	>75% Gras	s cover, Go	bod, HSG A		
	15,856	70	70 Weighted Average				
	7,402		46.68% Pervious Area				
	8,454		53.32% Impervious Area				
–	1 11.			0	Description		
Tc	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry,		

Summary for Subcatchment 200:

Runoff = 3.63 cfs @ 11.98 hrs, Volume= 0.173 af, Depth= 2.59" Routed to Pond #5 :

Area (sf)	CN	Description
15,750	98	Paved parking, HSG A
0	30	Woods, Good, HSG A
0	39	Pasture/grassland/range, Good, HSG A
19,258	39	>75% Grass cover, Good, HSG A
35,008	66	Weighted Average
19,258		55.01% Pervious Area
15,750		44.99% Impervious Area

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Tc Length Slope Velocity Capacity Descript (min) (feet) (ft/ft) (ft/sec) (cfs)	on						
6.0 Direct E	ntry,						
Summary for Subcatchment 201:							
Runoff = 3.39 cfs @ 11.98 hrs, Volume= Routed to Pond #6 :	0.162 af, Depth= 2.50"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Type II 24-hr 100-YEAR Rainfall=6.20"							
Area (sf) CN Description							
14,777 98 Paved parking, HSG A							
0 30 Woods, Good, HSG A 0 39 Pasture/grassland/range, Good,							
19,172 39 >75% Grass cover, Good, HSG							
33,949 65 Weighted Average							
19,172 56.47% Pervious Area 14,777 43.53% Impervious Area							
Tc Length Slope Velocity Capacity Descript	on						
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct E	ntry						
	inty,						
Summary for Subcatchment 202:							
Runoff = 0.76 cfs @ 12.20 hrs, Volume= Routed to Pond IB1 : Infiltration Basin 1	0.111 af, Depth= 0.62"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, T Type II 24-hr 100-YEAR Rainfall=6.20"	ime Span= 0.00-200.00 hrs, dt= 0.05 hrs						
Area (sf) CN Description							
3,549 98 Paved parking, HSG A							
0 30 Woods, Good, HSG A 0 39 Pasture/grassland/range, Good,							
0 39 Pasture/grassland/range, Good, 89,796 39 >75% Grass cover, Good, HSG							
93,345 41 Weighted Average							
89,796 96.20% Pervious Area							
3,549 3.80% Impervious Area							
Tc Length Slope Velocity Capacity Descript	on						
(min) (feet) (ft/ft) (ft/sec) (cfs)							
17.8 100 0.0150 0.09 Sheet Fl Grass: D	ow, A lense n= 0.240 P2= 2.58"						
1.6 213 0.0200 2.28 Shallow	Concentrated Flow, B						
	Kv= 16.1 fps						
19.4 313 Total							

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Pond #106:

 Inflow Area =
 0.364 ac, 53.32% Impervious, Inflow Depth = 2.96" for 100-YEAR event

 Inflow =
 1.86 cfs @
 11.97 hrs, Volume=
 0.090 af

 Outflow =
 1.86 cfs @
 11.97 hrs, Volume=
 0.090 af, Atten= 0%, Lag= 0.0 min

 Primary =
 1.86 cfs @
 11.97 hrs, Volume=
 0.090 af

 Routed to Pond #98 :
 11.97 hrs, Volume=
 0.090 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 329.25' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	328.50'	12.0" Round Culvert L= 85.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 328.50' / 327.00' S= 0.0176 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.80 cfs @ 11.97 hrs HW=329.23' (Free Discharge) ☐ 1=Culvert (Inlet Controls 1.80 cfs @ 2.92 fps)

Summary for Pond #14:

Inflow Area	a =	1.246 ac, 5	7.36% Impervious	, Inflow Depth =	3.26"	for 100-`	YEAR event
Inflow	=	6.97 cfs @	11.97 hrs, Volum	e= 0.338	af		
Outflow	=	6.97 cfs @	11.97 hrs, Volum	e= 0.338	af, Atte	en= 0%, L	.ag= 0.0 min
Primary	=	6.97 cfs @	11.97 hrs, Volum	e= 0.338	af		•
Routed	to Pond	d #15 :					

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 337.31' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	334.15'	15.0" Round Culvert
			L= 227.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 334.15' / 333.05' S= 0.0048 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=6.74 cfs @ 11.97 hrs HW=337.12' (Free Discharge) **1=Culvert** (Barrel Controls 6.74 cfs @ 5.49 fps)

Summary for Pond #15:

 Inflow Area =
 2.078 ac, 58.31% Impervious, Inflow Depth =
 3.29" for 100-YEAR event

 Inflow =
 11.75 cfs @
 11.97 hrs, Volume=
 0.571 af

 Outflow =
 11.75 cfs @
 11.97 hrs, Volume=
 0.571 af, Atten= 0%, Lag= 0.0 min

 Primary =
 11.75 cfs @
 11.97 hrs, Volume=
 0.571 af, Atten= 0%, Lag= 0.0 min

 Routed to Pond #16 :
 0.571 af

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Peak Elev= 337.66' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices			
#1	Primary	333.05'	15.0" Round Culvert L= 55.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 333.05' / 332.75' S= 0.0055 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf			
			@ 11.97 hrs HW=337.46' (Free Discharge) 37 cfs @ 9.27 fps)			
			Summary for Pond #16:			
Inflow Outflow Primary Route	Inflow Area = 2.333 ac, 58.73% Impervious, Inflow Depth = 3.32" for 100-YEAR event Inflow = 13.30 cfs @ 11.97 hrs, Volume= 0.646 af Outflow = 13.30 cfs @ 11.97 hrs, Volume= 0.646 af, Atten= 0%, Lag= 0.0 min Primary = 13.30 cfs @ 11.97 hrs, Volume= 0.646 af Routed to Pond #18 :					
		d method, Time 2' @ 11.97 hrs	Span= 0.00-200.00 hrs, dt= 0.05 hrs			
Device	Routing	Invert	Outlet Devices			
#1	Primary	332.50'	18.0" Round Culvert L= 100.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 332.50' / 331.95' S= 0.0055 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf			
Primary OutFlow Max=12.87 cfs @ 11.97 hrs HW=335.97' (Free Discharge) ↓ 1=Culvert (Barrel Controls 12.87 cfs @ 7.28 fps)						

Summary for Pond #18:

 Inflow Area =
 4.773 ac, 56.48% Impervious, Inflow Depth =
 3.18" for 100-YEAR event

 Inflow =
 26.11 cfs @
 11.97 hrs, Volume=
 1.267 af

 Outflow =
 26.11 cfs @
 11.97 hrs, Volume=
 1.267 af, Atten= 0%, Lag= 0.0 min

 Primary =
 26.11 cfs @
 11.97 hrs, Volume=
 1.267 af, Atten= 0%, Lag= 0.0 min

 Primary =
 26.11 cfs @
 11.97 hrs, Volume=
 1.267 af

 Routed to Pond #20 :
 11.97 hrs, Volume=
 1.267 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 335.40' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	331.45'	24.0" Round Culvert L= 139.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 331.45' / 330.20' S= 0.0090 '/' Cc= 0.900 n= 0.012, Flow Area= 3.14 sf

Primary OutFlow Max=25.25 cfs @ 11.97 hrs HW=335.24' (Free Discharge) ←1=Culvert (Inlet Controls 25.25 cfs @ 8.04 fps)

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Pond #20:

 Inflow Area =
 7.645 ac, 57.67% Impervious, Inflow Depth =
 3.25" for 100-YEAR event

 Inflow =
 42.66 cfs @
 11.97 hrs, Volume=
 2.072 af

 Outflow =
 42.66 cfs @
 11.97 hrs, Volume=
 2.072 af, Atten= 0%, Lag= 0.0 min

 Primary =
 42.66 cfs @
 11.97 hrs, Volume=
 2.072 af

 Routed to Pond #66 :
 11.97 hrs, Volume=
 2.072 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 341.84' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	330.20'	24.0" Round Culvert L= 218.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 330.20' / 329.00' S= 0.0055 '/' Cc= 0.900 n= 0.012, Flow Area= 3.14 sf

Primary OutFlow Max=41.28 cfs @ 11.97 hrs HW=341.23' (Free Discharge) **1=Culvert** (Barrel Controls 41.28 cfs @ 13.14 fps)

Summary for Pond #28:

Inflow Area	a =	1.623 ac, 5	54.44% Impervious	, Inflow Depth =	3.06"	for 100-YEAR event
Inflow	=	8.54 cfs @	11.97 hrs, Volum	e= 0.414	af	
Outflow	=	8.54 cfs @	11.97 hrs, Volum	e= 0.414	af, Atte	n= 0%, Lag= 0.0 min
Primary	=	8.54 cfs @	11.97 hrs, Volum	e= 0.414	af	-
Routed to Pond #29 :						

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 338.04' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	334.20'	15.0" Round Culvert L= 147.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 334.20' / 333.50' S= 0.0048 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=8.26 cfs @ 11.97 hrs HW=337.86' (Free Discharge) **1=Culvert** (Barrel Controls 8.26 cfs @ 6.73 fps)

Summary for Pond #29:

 Inflow Area =
 1.933 ac, 54.76% Impervious, Inflow Depth =
 3.08" for 100-YEAR event

 Inflow =
 10.22 cfs @
 11.97 hrs, Volume=
 0.495 af

 Outflow =
 10.22 cfs @
 11.97 hrs, Volume=
 0.495 af, Atten= 0%, Lag= 0.0 min

 Primary =
 10.22 cfs @
 11.97 hrs, Volume=
 0.495 af, Atten= 0%, Lag= 0.0 min

 Primary =
 10.22 cfs @
 11.97 hrs, Volume=
 0.495 af

 Routed to Pond #18 :
 11.97 hrs, Volume=
 0.495 af

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Peak Elev= 336.25' @ 11.97 hrs

Device Routing Invert Outlet Devices						
#1 Primary 333.50' 18.0" Round Culvert L= 222.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 333.50' / 332.20' S= 0.0059 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf						
Primary OutFlow Max=9.88 cfs @ 11.97 hrs HW=336.11' (Free Discharge) ☐ 1=Culvert (Barrel Controls 9.88 cfs @ 5.59 fps)						
Summary for Pond #32:						
Inflow Area =1.290 ac, 59.77% Impervious, Inflow Depth =3.35" for 100-YEAR eventInflow =7.42 cfs @11.97 hrs, Volume=0.360 afOutflow =7.42 cfs @11.97 hrs, Volume=0.360 af, Atten= 0%, Lag= 0.0 minPrimary =7.42 cfs @11.97 hrs, Volume=0.360 afRouted to Pond #33 :11.97 hrs, Volume=0.360 af						
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 336.92' @ 11.97 hrs						
Device Routing Invert Outlet Devices						
#1 Primary 333.80' 15.0" Round Culvert L= 163.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 333.80' / 333.00' S= 0.0049 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf						
Primary OutFlow Max=7.18 cfs @ 11.97 hrs HW=336.77' (Free Discharge) 1=Culvert (Barrel Controls 7.18 cfs @ 5.85 fps)						

Summary for Pond #33:

 Inflow Area =
 1.757 ac, 58.90% Impervious, Inflow Depth =
 3.30" for 100-YEAR event

 Inflow =
 9.96 cfs @
 11.97 hrs, Volume=
 0.484 af

 Outflow =
 9.96 cfs @
 11.97 hrs, Volume=
 0.484 af, Atten= 0%, Lag= 0.0 min

 Primary =
 9.96 cfs @
 11.97 hrs, Volume=
 0.484 af

 Routed to Pond #34 :
 0.484 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 340.26' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	333.00'	15.0" Round Culvert L= 297.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 333.00' / 331.50' S= 0.0051 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=9.64 cfs @ 11.97 hrs HW=339.83' (Free Discharge) ←1=Culvert (Barrel Controls 9.64 cfs @ 7.85 fps)

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Pond #34:

 Inflow Area =
 2.256 ac, 58.82% Impervious, Inflow Depth =
 3.31" for 100-YEAR event

 Inflow =
 12.82 cfs @
 11.97 hrs, Volume=
 0.623 af

 Outflow =
 12.82 cfs @
 11.97 hrs, Volume=
 0.623 af, Atten= 0%, Lag= 0.0 min

 Primary =
 12.82 cfs @
 11.97 hrs, Volume=
 0.623 af

 Routed to Pond #20 :
 11.97 hrs, Volume=
 0.623 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 335.04' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	331.25'	18.0" Round Culvert L= 128.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 331.25' / 330.70' S= 0.0043 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf

Primary OutFlow Max=12.41 cfs @ 11.97 hrs HW=334.88' (Free Discharge) **1=Culvert** (Barrel Controls 12.41 cfs @ 7.02 fps)

Summary for Pond #38:

Inflow Area =	0.398 ac, 69.56%	6 Impervious, Inflow D	epth = 3.96"	for 100-YEAR event
Inflow =	2.66 cfs @ 11.97	7 hrs, Volume=	0.131 af	
Outflow =	2.66 cfs @ 11.97	7 hrs, Volume=	0.131 af, Atte	en= 0%, Lag= 0.0 min
Primary =	2.66 cfs @ 11.97	7 hrs, Volume=	0.131 af	-
Routed to Por	d #39 :			

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 333.28' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary		12.0" Round Culvert L= 285.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 332.30' / 329.15' S= 0.0111 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.58 cfs @ 11.97 hrs HW=333.26' (Free Discharge) -1=Culvert (Inlet Controls 2.58 cfs @ 3.33 fps)

Summary for Pond #39:

Inflow Are	a =	2.289 ac, 7	0.57% Imper	vious, Inflow [Depth = $4.03''$	for 100-YEAR event
Inflow	=	15.45 cfs @	11.97 hrs, V	/olume=	0.769 af	
Outflow	=	15.45 cfs @	11.97 hrs, V	/olume=	0.769 af, Att	en= 0%, Lag= 0.0 min
Primary	=	15.45 cfs @	11.97 hrs, V	/olume=	0.769 af	-
Routed	l to Por	nd #90 :				

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Peak Elev= 337.50' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices			
#1	Primary	328.65'	18.0" Round Culvert L= 393.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 328.65' / 327.00' S= 0.0042 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf			
	Primary OutFlow Max=14.98 cfs @ 11.97 hrs HW=337.01' (Free Discharge) ↓ 1=Culvert (Barrel Controls 14.98 cfs @ 8.48 fps)					
	Summary for Pond #45:					
Outflow Primary	= =	6.52 cfs @ 1 ² 6.52 cfs @ 1 ² 6.52 cfs @ 1 ²	22% Impervious, Inflow Depth = 4.07" for 100-YEAR event 1.97 hrs, Volume= 0.324 af 1.97 hrs, Volume= 0.324 af, Atten= 0%, Lag= 0.0 min 1.97 hrs, Volume= 0.324 af			
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 333.64' @ 11.97 hrs						
Device	Routing	Invert	Outlet Devices			
#1	Primary	326.75'	12.0" Round Culvert			

L= 195.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 326.75' / 325.50' S= 0.0064 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=6.32 cfs @ 11.97 hrs HW=333.26' (Free Discharge) ←1=Culvert (Barrel Controls 6.32 cfs @ 8.05 fps)

Summary for Pond #49:

 Inflow Area =
 0.877 ac, 77.66% Impervious, Inflow Depth =
 4.49" for 100-YEAR event

 Inflow =
 6.49 cfs @
 11.97 hrs, Volume=
 0.328 af

 Outflow =
 6.49 cfs @
 11.97 hrs, Volume=
 0.328 af, Atten= 0%, Lag= 0.0 min

 Primary =
 6.49 cfs @
 11.97 hrs, Volume=
 0.328 af

 Routed to Pond #39 :
 0.328 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 332.78' @ 11.96 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	329.35'	12.0" Round Culvert L= 22.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 329.35' / 329.15' S= 0.0091 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=6.30 cfs @ 11.97 hrs HW=332.63' (Free Discharge) ←1=Culvert (Inlet Controls 6.30 cfs @ 8.02 fps)

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Pond #5:

 Inflow Area =
 0.804 ac, 44.99% Impervious, Inflow Depth = 2.59" for 100-YEAR event

 Inflow =
 3.63 cfs @
 11.98 hrs, Volume=
 0.173 af

 Outflow =
 3.63 cfs @
 11.98 hrs, Volume=
 0.173 af, Atten= 0%, Lag= 0.0 min

 Primary =
 3.63 cfs @
 11.98 hrs, Volume=
 0.173 af

 Routed to Pond #6 :
 11.98 hrs, Volume=
 0.173 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 337.66' @ 11.98 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	335.40'	12.0" Round Culvert L= 192.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 335.40' / 334.50' S= 0.0047 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=3.47 cfs @ 11.98 hrs HW=337.51' (Free Discharge) **1=Culvert** (Barrel Controls 3.47 cfs @ 4.42 fps)

Summary for Pond #56:

Inflow Area	a =	0.399 ac, 4	8.85% Impervious,	Inflow Depth =	2.78"	for 100-YEAR event
Inflow	=	1.91 cfs @	11.97 hrs, Volume	e= 0.092	af	
Outflow	=	1.91 cfs @	11.97 hrs, Volume	e= 0.092	af, Atter	n= 0%, Lag= 0.0 min
Primary	=	1.91 cfs @	11.97 hrs, Volume	e= 0.092	af	-
Routed to Pond #57 :						

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 333.11' @ 11.97 hrs

Device Routing Invert Outlet Devices	
#1 Primary 332.35' 12.0'' Round Culvert L= 248.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 332.35' / 329.35' S= 0.0121 '/' Cc= 0.9 n= 0.012, Flow Area= 0.79 sf	900

Primary OutFlow Max=1.85 cfs @ 11.97 hrs HW=333.10' (Free Discharge) -1=Culvert (Inlet Controls 1.85 cfs @ 2.94 fps)

Summary for Pond #57:

Inflow Area	a =	1.271 ac, 5	53.38% Impe	ervious, Ir	flow Depth =	3.04"	for 100)-YEAR event
Inflow	=	6.65 cfs @	11.97 hrs,	Volume=	0.322	af		
Outflow	=	6.65 cfs @	11.97 hrs,	Volume=	0.322	af, At	ten= 0%,	Lag= 0.0 min
Primary	=	6.65 cfs @	11.97 hrs,	Volume=	0.322	af		•
Routed to Pond #58 :								

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Peak Elev= 335.04' @ 11.97 hrs

Device Routing Invert Outlet Devices				
#1 Primary 329.35' 12.0" Round Culvert L= 157.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 329.35' / 327.75' S= 0.0102 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf				
Primary OutFlow Max=6.43 cfs @ 11.97 hrs HW=334.68' (Free Discharge) — 1=Culvert (Barrel Controls 6.43 cfs @ 8.19 fps)				
Summary for Pond #58:				
Inflow Area = 2.499 ac, 54.83% Impervious, Inflow Depth = 3.10" for 100-YEAR event Inflow = 13.32 cfs @ 11.97 hrs, Volume= 0.645 af Outflow = 13.32 cfs @ 11.97 hrs, Volume= 0.645 af, Atten= 0%, Lag= 0.0 min Primary = 13.32 cfs @ 11.97 hrs, Volume= 0.645 af Routed to Pond #98 :				
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 331.98' @ 11.97 hrs				
Device Routing Invert Outlet Devices				
#1 Primary 327.75' 18.0" Round Culvert L= 214.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 327.75' / 326.25' S= 0.0070 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf				
Primary OutFlow Max=12.88 cfs @ 11.97 hrs HW=331.74' (Free Discharge) 1=Culvert (Barrel Controls 12.88 cfs @ 7.29 fps)				

Summary for Pond #6:

 Inflow Area =
 1.583 ac, 44.27% Impervious, Inflow Depth =
 2.54" for 100-YEAR event

 Inflow =
 7.02 cfs @
 11.98 hrs, Volume=
 0.336 af

 Outflow =
 7.02 cfs @
 11.98 hrs, Volume=
 0.336 af, Atten= 0%, Lag= 0.0 min

 Primary =
 7.02 cfs @
 11.98 hrs, Volume=
 0.336 af

 Routed to Pond SF1 : Sediment Forebay 1
 0.336 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 336.35' @ 11.98 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	334.25'	15.0" Round Culvert L= 34.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 334.25' / 334.00' S= 0.0074 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=6.71 cfs @ 11.98 hrs HW=336.26' (Free Discharge) ←1=Culvert (Barrel Controls 6.71 cfs @ 5.47 fps)

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Pond #66:

 Inflow Area =
 8.117 ac, 58.04% Impervious, Inflow Depth =
 3.28" for 100-YEAR event

 Inflow =
 45.60 cfs @
 11.97 hrs, Volume=
 2.216 af

 Outflow =
 45.60 cfs @
 11.97 hrs, Volume=
 2.216 af, Atten= 0%, Lag= 0.0 min

 Primary =
 45.60 cfs @
 11.97 hrs, Volume=
 2.216 af

 Routed to Pond #67 :
 11.97 hrs, Volume=
 2.216 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 339.31' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	329.00'	24.0" Round Culvert L= 136.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 329.00' / 327.75' S= 0.0092 '/' Cc= 0.900 n= 0.012, Flow Area= 3.14 sf

Primary OutFlow Max=44.12 cfs @ 11.97 hrs HW=338.77' (Free Discharge) **1=Culvert** (Barrel Controls 44.12 cfs @ 14.04 fps)

Summary for Pond #67:

Inflow Are	a =	8.440 ac, 5	8.37% Impervious,	Inflow Depth =	3.29"	for 100-YEAR event
Inflow	=	47.66 cfs @	11.97 hrs, Volume	e= 2.317	af	
Outflow	=	47.66 cfs @	11.97 hrs, Volume	e 2.317	af, Atter	n= 0%, Lag= 0.0 min
Primary	=	47.66 cfs @	11.97 hrs, Volume	e= 2.317	af	
Routed to Pond SF2 : Sediment Forebay 2						

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 338.60' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	327.75'	24.0" Round Culvert
			L= 45.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 327.75' / 327.45' S= 0.0067 '/' Cc= 0.900 n= 0.012, Flow Area= 3.14 sf

Primary OutFlow Max=46.12 cfs @ 11.97 hrs HW=338.04' (Free Discharge)

Summary for Pond #75:

Inflow Are	a =	0.451 ac, 6	2.14% Imperviou	s, Inflow Dept	th = 3.55"	for 100-YEAR event
Inflow	=	2.74 cfs @	11.97 hrs, Volui	ne= 0.	.134 af	
Outflow	=	2.74 cfs @	11.97 hrs, Volui	ne= 0.	.134 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	2.74 cfs @	11.97 hrs, Volui	ne= 0.	.134 af	-
Routed to Pond #28 :						

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Peak Elev= 336.47' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices			
#1	Primary	335.45'	12.0" Round Culvert L= 124.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 335.45' / 334.45' S= 0.0081 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf			
			② 11.97 hrs HW=336.44' (Free Discharge) cfs @ 3.38 fps)			
	Summary for Pond #76:					
Inflow A	rea =	0.319 ac, 74.4	47% Impervious, Inflow Depth = 4.28" for 100-YEAR event			
Inflow	=	2.27 cfs @ 1'	1.97 hrs, Volume= 0.114 af			
Outflow	=	2.27 cfs @ 1'	1.97 hrs, Volume= 0.114 af, Atten= 0%, Lag= 0.0 min			
Primary	=	2.27 cfs @ 1'	1.97 hrs, Volume= 0.114 af			
Route	ed to Ponc	1 #77 :				
0		d method, Time	Span= 0.00-200.00 hrs, dt= 0.05 hrs			

Peak Elev= 328.21' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
	Primary	327.35'	12.0" Round Culvert L= 128.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 327.35' / 325.85' S= 0.0117 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.21 cfs @ 11.97 hrs HW=328.19' (Free Discharge) ←1=Culvert (Inlet Controls 2.21 cfs @ 3.12 fps)

Summary for Pond #77:

 Inflow Area =
 0.742 ac, 80.09% Impervious, Inflow Depth = 4.65" for 100-YEAR event

 Inflow =
 5.61 cfs @
 11.96 hrs, Volume=
 0.288 af

 Outflow =
 5.61 cfs @
 11.96 hrs, Volume=
 0.288 af, Atten= 0%, Lag= 0.0 min

 Primary =
 5.61 cfs @
 11.96 hrs, Volume=
 0.288 af

 Routed to Pond #79 :
 0.288 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 327.58' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
-	Primary	325.60'	15.0" Round Culvert L= 106.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 325.60' / 325.15' S= 0.0042 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=5.45 cfs @ 11.96 hrs HW=327.51' (Free Discharge) ←1=Culvert (Barrel Controls 5.45 cfs @ 4.44 fps)

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Pond #79:

 Inflow Area =
 1.072 ac, 81.52% Impervious, Inflow Depth = 4.74" for 100-YEAR event

 Inflow =
 8.21 cfs @
 11.96 hrs, Volume=
 0.423 af

 Outflow =
 8.21 cfs @
 11.96 hrs, Volume=
 0.423 af, Atten= 0%, Lag= 0.0 min

 Primary =
 8.21 cfs @
 11.96 hrs, Volume=
 0.423 af

 Routed to Pond #95 :
 11.96 hrs, Volume=
 0.423 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 328.58' @ 11.96 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	325.15'	15.0" Round Culvert L= 119.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 325.15' / 324.65' S= 0.0042 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf

Primary OutFlow Max=7.99 cfs @ 11.96 hrs HW=328.44' (Free Discharge) ☐ 1=Culvert (Barrel Controls 7.99 cfs @ 6.51 fps)

Summary for Pond #82:

Inflow Area	a =	0.707 ac, 8	30.42% Impervious	, Inflow Depth =	4.62"	for 100-YEAR even	t
Inflow	=	5.33 cfs @	11.97 hrs, Volum	e= 0.272	af		
Outflow	=	5.33 cfs @	11.97 hrs, Volum	e= 0.272	af, Atte	n= 0%, Lag= 0.0 mir	n
Primary	=	5.33 cfs @	11.97 hrs, Volum	e= 0.272	af	-	
Routed to Pond #87 :							

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 331.52' @ 11.96 hrs

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		15.0" Round Culvert L= 120.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 329.75' / 329.15' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf
), -

Primary OutFlow Max=5.07 cfs @ 11.97 hrs HW=331.43' (Free Discharge) **1=Culvert** (Barrel Controls 5.07 cfs @ 4.13 fps)

Summary for Pond #83:

Inflow Area	a =	0.304 ac, 7	8.56% Impervious	, Inflow Depth =	4.49" for 100-YEAR event
Inflow	=	2.25 cfs @	11.97 hrs, Volum	e= 0.114 a	ıf
Outflow	=	2.25 cfs @	11.97 hrs, Volum	e= 0.114 a	If, Atten= 0%, Lag= 0.0 min
Primary	=	2.25 cfs @	11.97 hrs, Volum	e= 0.114 a	ſ
Routed to Pond #82 :					

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Peak Elev= 331.39' @ 11.97 hrs

Device Routing Invert Outlet Devices #1 Primary 330.40' 12.0'' Round Culvert L= 81.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 330.40' / 330.00' S= 0.0049 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf Primary OutFlow Max=2.19 cfs @ 11.97 hrs HW=331.37' (Free Discharge)
1=Culvert (Barrel Controls 2.19 cfs @ 3.59 fps)
Summary for Pond #87:
Inflow Area = 1.116 ac, 80.64% Impervious, Inflow Depth = 4.65" for 100-YEAR event Inflow = 8.46 cfs @ 11.96 hrs, Volume= 0.432 af Outflow = 8.46 cfs @ 11.96 hrs, Volume= 0.432 af, Atten= 0%, Lag= 0.0 min Primary = 8.46 cfs @ 11.96 hrs, Volume= 0.432 af Routed to Pond #88 :
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 332.48' @ 11.96 hrs
Device Routing Invert Outlet Devices #1 Primary 329.15' 15.0'' Round Culvert L= 105.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 329.15' / 328.60' S= 0.0052 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf
Primary OutFlow Max=8.22 cfs @ 11.96 hrs HW=332.35' (Free Discharge) 1=Culvert (Barrel Controls 8.22 cfs @ 6.70 fps)
Summary for Pond #88:
Inflow Area = 1.739 ac, 82.53% Impervious, Inflow Depth = 4.79" for 100-YEAR event Inflow = 13.45 cfs @ 11.96 hrs, Volume= 0.694 af Outflow = 13.45 cfs @ 11.96 hrs, Volume= 0.694 af, Atten= 0%, Lag= 0.0 min Primary = 13.45 cfs @ 11.96 hrs, Volume= 0.694 af Routed to Pond #90 : Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 333.39' @ 11.96 hrs
Device Routing Invert Outlet Devices #1 Primary 328.35' 18.0'' Round Culvert

#1 Primary 328.35' **18.0" Round Culvert** L= 251.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 328.35' / 327.05' S= 0.0052 '/' Cc= 0.900 n= 0.012, Flow Area= 1.77 sf

Primary OutFlow Max=13.08 cfs @ 11.96 hrs HW=333.16' (Free Discharge) **1=Culvert** (Barrel Controls 13.08 cfs @ 7.40 fps)

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Summary for Pond #90:

 Inflow Area =
 4.278 ac, 75.02% Impervious, Inflow Depth =
 4.31" for 100-YEAR event

 Inflow =
 30.41 cfs @
 11.97 hrs, Volume=
 1.537 af

 Outflow =
 30.41 cfs @
 11.97 hrs, Volume=
 1.537 af, Atten= 0%, Lag= 0.0 min

 Primary =
 30.41 cfs @
 11.97 hrs, Volume=
 1.537 af, Atten= 0%, Lag= 0.0 min

 Primary =
 30.41 cfs @
 11.97 hrs, Volume=
 1.537 af

 Routed to Pond #98 :
 11.97 hrs, Volume=
 1.537 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 331.51' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	326.50'	24.0" Round Culvert L= 73.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 326.50' / 326.00' S= 0.0068 '/' Cc= 0.900 n= 0.012, Flow Area= 3.14 sf

Primary OutFlow Max=29.53 cfs @ 11.97 hrs HW=331.31' (Free Discharge) —1=Culvert (Inlet Controls 29.53 cfs @ 9.40 fps)

Summary for Pond #94:

Inflow Area	a =	10.352 ac, 7	0.43% Impervious,	Inflow Depth =	4.04"	for 100-Y	EAR event
Inflow	=	69.29 cfs @	11.97 hrs, Volume	= 3.484	af		
Outflow	=	69.29 cfs @	11.97 hrs, Volume	= 3.484	af, Atte	en= 0%, La	ag= 0.0 min
Primary	=	69.29 cfs @	11.97 hrs, Volume	= 3.484	af		-
Routed to Pond SF3 : Sediment Forebay 3							

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 333.75' @ 11.97 hrs

Device	Routing	Invert	Outlet Devices
	Primary	323.95'	30.0" Round Culvert L= 35.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 323.95' / 323.75' S= 0.0057 '/' Cc= 0.900 n= 0.012, Flow Area= 4.91 sf

Primary OutFlow Max=67.22 cfs @ 11.97 hrs HW=333.29' (Free Discharge) -1=Culvert (Inlet Controls 67.22 cfs @ 13.69 fps)

Summary for Pond #95:

 Inflow Area =
 1.411 ac, 82.32% Impervious, Inflow Depth =
 4.78" for 100-YEAR event

 Inflow =
 10.89 cfs @
 11.96 hrs, Volume=
 0.562 af

 Outflow =
 10.89 cfs @
 11.96 hrs, Volume=
 0.562 af, Atten= 0%, Lag= 0.0 min

 Primary =
 10.89 cfs @
 11.96 hrs, Volume=
 0.562 af

 Routed to Pond #94 :
 0.562 af

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Peak Elev= 329.54' @ 11.96 hrs

Device	Routing	Invert	Outlet Devices			
#1	Primary	324.65'	15.0" Round Culvert L= 104.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 324.65' / 323.95' S= 0.0067 '/' Cc= 0.900 n= 0.012, Flow Area= 1.23 sf			
Primary	OutFlow	Max=10.59 cfs	@ 11.96 hrs HW=329.33' (Free Discharge)			
1=Cu	ilvert (Ba	arrel Controls 10.	59 cfs @ 8.63 fps)			
			Summary for Pond #98:			
Inflow Outflow Primary	Inflow Area = 7.404 ac, 66.80% Impervious, Inflow Depth = 3.81" for 100-YEAR event Inflow = 47.24 cfs @ 11.97 hrs, Volume= 2.354 af Outflow = 47.24 cfs @ 11.97 hrs, Volume= 2.354 af, Atten= 0%, Lag= 0.0 min Primary = 47.24 cfs @ 11.97 hrs, Volume= 2.354 af Routed to Pond #94 :					
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 341.19' @ 11.97 hrs						
Device	Routing	Invert	Outlet Devices			
#1	Drimony	226.00	24 0" Dound Culvert			

Device	Routing	Invert	Outlet Devices
#1	Primary	326.00'	24.0" Round Culvert
			L= 270.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 326.00' / 323.95' S= 0.0076 '/' Cc= 0.900 n= 0.012, Flow Area= 3.14 sf

Primary OutFlow Max=45.79 cfs @ 11.97 hrs HW=340.36' (Free Discharge) ←1=Culvert (Barrel Controls 45.79 cfs @ 14.57 fps)

Summary for Pond GD1: Grassed Depression

Inflow Area =	1.706 ac, 16.96% Impervious, Inflow D	epth = 1.17" for 100-YEAR event
Inflow =	2.05 cfs @ 12.11 hrs, Volume=	0.166 af
Outflow =	0.57 cfs @ 12.48 hrs, Volume=	0.166 af, Atten= 72%, Lag= 22.7 min
Discarded =	0.57 cfs @ 12.48 hrs, Volume=	0.166 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 337.50' @ 12.48 hrs Surf.Area= 2,970 sf Storage= 1,373 cf

Plug-Flow detention time= 13.8 min calculated for 0.166 af (100% of inflow) Center-of-Mass det. time= 13.8 min (915.4 - 901.6)

Volume	Invert	Avail.S	torage	Storage	e Description		
#1	337.00'	2	,978 cf	Custon	n Stage Data (Con	ic) Listed below (I	Recalc)
Elevation	Surf.			.Store	Cum.Store	Wet.Area	
(feet)	(5	sq-ft)	(cubi	c-feet)	(cubic-feet)	(sq-ft)	
337.00	2	2,578		0	0	2,578	
338.00	3	3,397		2,978	2,978	3,420	

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Device Routing Invert Outlet Devices							
#1 Discarded 337.00' 8.270 in/hr Exfiltration over Wetted area Phase-In= 0.01'							
Discarded OutFlow Max=0.57 cfs @ 12.48 hrs HW=337.49' (Free Discharge)							
Summary for Pond GD2: Grassed Depression							
Inflow Area = 3.262 ac, 6.01% Impervious, Inflow Depth = 0.62" for 100-YEAR event Inflow = 0.90 cfs @ 12.33 hrs, Volume= 0.169 af Outflow = 0.68 cfs @ 12.55 hrs, Volume= 0.169 af, Atten= 25%, Lag= 13.3 min Discarded = 0.68 cfs @ 12.55 hrs, Volume= 0.169 af							
Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 329.09' @ 12.55 hrs Surf.Area= 3,537 sf Storage= 278 cf							
Plug-Flow detention time= 1.9 min calculated for 0.169 af (100% of inflow) Center-of-Mass det. time= 1.9 min(959.3 - 957.4)							
Volume Invert Avail.Storage Storage Description							

#1	329.00'	8,598 cf Cus	tom Stage Data (Co	nic) Listed below (Recalc)
Elevation	Surf.Area	Inc.Store	e Cum.Store	Wet.Area	
(feet)	(sq-ft)	(cubic-feet) (cubic-feet)	(sq-ft)	
329.00	2,800		0 0	2,800	
330.00	16,250	8,598	8 8,598	16,254	
Device R	outing	wart Outlat Da	vices		

Device	Routing	Invert	Outlet Devices	
#1	Discarded	329.00'	8.270 in/hr Exfiltration over Wetted area	Phase-In= 0.01'

Discarded OutFlow Max=0.68 cfs @ 12.55 hrs HW=329.09' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.68 cfs)

Summary for Pond GD3: Grassed Depression

Inflow Area =	2.265 ac,	6.63% Impervious, Inflow D	Depth = 0.62" for 100-YEAR event
Inflow =	0.74 cfs @	12.23 hrs, Volume=	0.118 af
Outflow =	0.40 cfs @	12.58 hrs, Volume=	0.118 af, Atten= 46%, Lag= 20.8 min
Discarded =	0.40 cfs @	12.58 hrs, Volume=	0.118 af

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 331.18' @ 12.58 hrs Surf.Area= 2,082 sf Storage= 361 cf

Plug-Flow detention time= 4.0 min calculated for 0.118 af (100% of inflow) Center-of-Mass det. time= 4.0 min (955.6 - 951.7)

Volume	Invert	Avail.Storage	Storage Description
#1	331.00'	2,500 cf	Custom Stage Data (Conic) Listed below (Recalc)

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
331.0 332.0		1,865 3,195	0 2,500	0 2,500	1,865 3,207	
Device	Routing	Invert	Outlet Devices			
#1	Discarded	331.00'	8.270 in/hr Exfi	Itration over W	etted area Pha	se-In= 0.01'

Discarded OutFlow Max=0.40 cfs @ 12.58 hrs HW=331.18' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.40 cfs)

Summary for Pond IB1: Infiltration Basin 1

Inflow Area =	3.726 ac, 21.00% Impervious, Inflow	Depth = 1.37" for 100-YEAR event
Inflow =	7.02 cfs @ 11.99 hrs, Volume=	0.426 af
Outflow =	0.63 cfs @ 13.05 hrs, Volume=	0.426 af, Atten= 91%, Lag= 63.1 min
Discarded =	0.63 cfs @ 13.05 hrs, Volume=	0.426 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af
Routed to Link	DP2 : Offsite Flows	

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 335.95' @ 13.05 hrs Surf.Area= 3,246 sf Storage= 6,844 cf

Plug-Flow detention time= 118.1 min calculated for 0.426 af (100% of inflow) Center-of-Mass det. time= 117.4 min (998.6 - 881.1)

Volume	Invert	Avail.Stor	rage Storage l	Description		
#1	333.00'	14,99	98 cf Custom	Stage Data (Conid	c) Listed below (Red	calc)
Elevatio (fee 333.0 334.0 336.0 338.0	9 <u>t)</u> 00 00 00	rf.Area (sq-ft) 1,482 2,027 3,280 4,759	Inc.Store (cubic-feet) 0 1,747 5,257 7,993	Cum.Store (cubic-feet) 0 1,747 7,004 14,998	Wet.Area (sq-ft) 1,482 2,047 3,351 4,896	
Device	Routing	Invert	Outlet Devices	8		
#1 #2	Discarded Primary	333.00' 337.00'	8.270 in/hr Exfiltration over Wetted area Phase-In= 0.01' 10.0' long x 5.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.34 2.50 2.70 2.68 2.66 2.65 2.65 2.65 2.65 2.66 2.68 2.70 2.74 2.79 2.88			

Discarded OutFlow Max=0.63 cfs @ 13.05 hrs HW=335.95' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.63 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=333.00' (Free Discharge) ☐ 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond IB2: Infiltration Basin 2

Inflow Area =	11.439 ac, 4	5.85% Impervious, I	nflow Depth = 2.53" for 100-YEAR event
Inflow =	46.83 cfs @	11.99 hrs, Volume=	2.412 af
Outflow =	2.59 cfs @	13.37 hrs, Volume=	2.412 af, Atten= 94%, Lag= 82.6 min
Discarded =	2.59 cfs @	13.37 hrs, Volume=	2.412 af
Primary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af
Routed to Link	CDP1 : Offsite	Flows	

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 330.91' @ 13.37 hrs Surf.Area= 13,283 sf Storage= 50,835 cf

Plug-Flow detention time= 223.1 min calculated for 2.412 af (100% of inflow) Center-of-Mass det. time= 223.0 min (1,071.0 - 847.9)

Volume	Invert	t Avail.Sto	rage Storage	Description		
#1	326.00	' 66,13	34 cf Custom	n Stage Data (Co	nic) Listed below	(Recalc)
Elevatio (fee 326.0 328.0 330.0 332.0	00 00 00 00	urf.Area (sq-ft) 7,666 9,792 12,144 14,723	Inc.Store (cubic-feet) 0 17,415 21,894 26,826	Cum.Store (cubic-feet) 0 17,415 39,309 66,134	Wet.Area (sq-ft) 7,666 9,892 12,359 15,065	
Device	Routing	Invert	Outlet Device	,	10,000	
Device Routing Invert Outlet Devices #1 Discarded 326.00' 8.270 in/hr Exfiltration over Wetted area Phase-In= 0.01' #2 Primary 331.00' 20.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.67 2.64						
Disconded OutFlow, May 0.50 at a 12.27 hrs. LWA 220.041 (Free Discharge)						

Discarded OutFlow Max=2.59 cfs @ 13.37 hrs HW=330.91' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 2.59 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=326.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond IB3: Infiltration Basin 3

Inflow Area =	12.815 ac, 5	59.12% Impervious,	Inflow Depth = 3.2	7" for 100-YEAR event
Inflow =	69.22 cfs @	12.00 hrs, Volume	e= 3.491 af	
Outflow =	4.42 cfs @	12.90 hrs, Volume	e= 3.491 af, <i>i</i>	Atten= 94%, Lag= 54.4 min
Discarded =	4.42 cfs @	12.90 hrs, Volume	e= 3.491 af	
Primary =	0.00 cfs @	0.00 hrs, Volume	e= 0.000 af	
Routed to Link	CDP1 : Offsite	Flows		

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 325.90' @ 12.90 hrs Surf.Area= 22,914 sf Storage= 70,693 cf

Plug-Flow detention time= 161.4 min calculated for 3.490 af (100% of inflow) Center-of-Mass det. time= 161.4 min (989.9 - 828.5)

Type II 24-hr 100-YEAR Rainfall=6.20" Printed 3/26/2025

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Sto	orage Storage	Description		
#1	322.00'	97,3	35 cf Custom	Stage Data (Conic	c) Listed below (I	Recalc)
Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
322.0	00	13,509	0	0	13,509	
324.0	00	18,223	31,615	31,615	18,306	
326.0	00	23,165	41,289	72,904	23,352	
327.0	00	25,720	24,431	97,335	25,967	
Device	Routing	Invert	Outlet Devices	S		
#1	Discarded	322.00'	8.270 in/hr Ex	filtration over We	tted area Pha	se-In= 0.01'
#2	Primary	326.00'	Head (feet) 0	10.0' breadth Broa .20 0.40 0.60 0.8 n) 2.49 2.56 2.70	0 1.00 1.20 1.4	40 1.60

Discarded OutFlow Max=4.42 cfs @ 12.90 hrs HW=325.90' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 4.42 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=322.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond SF1: Sediment Forebay 1

Inflow Area	a =	1.583 ac, 44.27% Impervious, Inflow Depth = 2.54" for 100-YEAR event	1
Inflow	=	7.02 cfs @ 11.98 hrs, Volume= 0.336 af	
Outflow	=	6.89 cfs @_ 11.99 hrs, Volume=0.315 af, Atten= 2%, Lag= 0.9 min	۱
Primary	=	6.89 cfs @ 11.99 hrs, Volume= 0.315 af	
Routed	to Pond	B1 : Infiltration Basin 1	

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 334.89' @ 11.99 hrs Surf.Area= 929 sf Storage= 1,417 cf

Plug-Flow detention time= 46.6 min calculated for 0.315 af (94% of inflow) Center-of-Mass det. time= 13.2 min (857.0 - 843.8)

Volume	Inv	ert Avail.S	torage Storag	ge Description				
#1	332.	00' 6	327 cf Custo	om Stage Data (Co	nic) Listed below	(Recalc)		
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
332.0	00	143	0	0	143			
334.0	00	640	724	724	657			
336.0	00	1,366	1,961	2,684	1,416			
338.0	00	2,318	3,642	6,327	2,415			
Device	Routing	Inve	rt Outlet Devi	ces				
#1	Primary	334.25	Head (feet)	5.0' long x 5.0' breadth Broad-Crested Rectangular WeirHead (feet)0.200.400.600.801.001.201.401.601.802.002.503.003.504.004.505.005.50				

Coef. (English) 2.34 2.50 2.70 2.68 2.68 2.66 2.65 2.65 2.65 2.65 2.67 2.66 2.68 2.70 2.74 2.79 2.88

Primary OutFlow Max=6.72 cfs @ 11.99 hrs HW=334.88' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 6.72 cfs @ 2.14 fps)

Summary for Pond SF2: Sediment Forebay 2

Inflow Area	a =	8.440 ac, 5	8.37% Impervious	, Inflow Depth =	3.29" for 10	0-YEAR event
Inflow	=	47.66 cfs @	11.97 hrs, Volum	e= 2.317	af	
Outflow	=	46.42 cfs @	11.99 hrs, Volum	e= 2.192	af, Atten= 3%	, Lag= 1.3 min
Primary	=	46.42 cfs @	11.99 hrs, Volum	e= 2.192	af	•
Routed	to Por	nd IB2 : Infiltrati	on Basin 2			

Routing by Stor-Ind method, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs Peak Elev= 328.95' @ 11.99 hrs Surf.Area= 3,846 sf Storage= 10,337 cf

Plug-Flow detention time= 45.2 min calculated for 2.192 af (95% of inflow) Center-of-Mass det. time= 14.8 min (840.0 - 825.2)

Volume	Inv	ert Avail.Sto	orage Storage	e Description		
#1	325.	00' 25,5	63 cf Custon	n Stage Data (Con	nic) Listed below (Recalc)
Elevatio (fee 325.0	t)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
325.0 326.0 328.0 330.0	0	1,533 2,035 3,210 4,610	0 1,778 5,201 7,778	0 1,778 6,979 14,757	1,533 2,057 3,286 4,754	
332.0	-	6,237	10,806	25,563	6,462	
Device	Routing	Invert	Outlet Device	es		
#1	Primary	327.50'	Head (feet) 2.50 3.00 3 Coef. (Englis	5.0' breadth Broa 0.20 0.40 0.60 0 .50 4.00 4.50 5.0 sh) 2.34 2.50 2.70 .66 2.68 2.70 2.7	.80 1.00 1.20 1. 00 5.50 0 2.68 2.68 2.66	40 1.60 1.80 2.00

Primary OutFlow Max=45.54 cfs @ 11.99 hrs HW=328.93' (Free Discharge) **1=Broad-Crested Rectangular Weir** (Weir Controls 45.54 cfs @ 3.17 fps)

Summary for Pond SF3: Sediment Forebay 3

 Inflow Area =
 11.302 ac, 64.92% Impervious, Inflow Depth =
 3.76" for 100-YEAR event

 Inflow =
 69.91 cfs @
 11.97 hrs, Volume=
 3.538 af

 Outflow =
 66.68 cfs @
 12.00 hrs, Volume=
 3.353 af, Atten= 5%, Lag= 1.6 min

 Primary =
 66.68 cfs @
 12.00 hrs, Volume=
 3.353 af

 Routed to Pond IB3 : Infiltration Basin 3
 3

Prepared by Environmental Design Partnership HydroCAD® 10.20-2h s/n 00476 © 2024 HydroCAD Software Solutions LLC

Peak Elev= 325.60' @ 12.00 hrs Surf.Area= 5,835 sf Storage= 17,229 cf

Plug-Flow detention time= 50.2 min calculated for 3.352 af (95% of inflow) Center-of-Mass det. time= 20.2 min (825.7 - 805.5)

Volume	Inv	ert Avail.Sto	orage Storage	Description		
#1	321.	00' 26,4	07 cf Custom	n Stage Data (Coni	c) Listed below (Re	ecalc)
Elevatio (fee	t)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
321.0	-	1,934	0	0	1,934	
322.0	0	2,611	2,264	2,264	2,632	
324.0	0	4,326	6,865	9,129	4,396	
326.0	0	6,248	10,515	19,645	6,385	
327.0	0	7,291	6,763	26,407	7,468	
Device	Routing	Invert	Outlet Device	es		
#1	Primary	323.75'	Head (feet) (2.50 3.00 3. Coef. (English	5.0' breadth Broad 0.20 0.40 0.60 0.8 50 4.00 4.50 5.00 h) 2.34 2.50 2.70 66 2.68 2.70 2.74	80 1.00 1.20 1.40 0 5.50 0 2.68 2.68 2.66 2	1.60 1.80 2.00

Primary OutFlow Max=65.86 cfs @ 12.00 hrs HW=325.58' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 65.86 cfs @ 3.59 fps)

Summary for Link DP1: Offsite Flows

Inflow Are	a =	24.254 ac, 52	2.86% Impervious,	Inflow Depth = 0	.00" for 100-YEAR event
Inflow	=	0.00 cfs @	0.00 hrs, Volume	e= 0.000 af	
Primary	=	0.00 cfs @	0.00 hrs, Volume	e= 0.000 af	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs

Summary for Link DP2: Offsite Flows

Inflow Area	=	3.726 ac, 21	1.00% Impervious	, Inflow Depth =	0.00" fo	or 100-YEAR event
Inflow	=	0.00 cfs @	0.00 hrs, Volum	e= 0.000	af	
Primary	=	0.00 cfs @	0.00 hrs, Volum	e= 0.000	af, Atten=	= 0%, Lag= 0.0 min
Routed t	to none	xistent node T	•			

Primary outflow = Inflow, Time Span= 0.00-200.00 hrs, dt= 0.05 hrs